The role of intestinal microbiota in the development of atopic dermatitis

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Intestinal microbiota plays a significant role in the development of the immune system and has a protective effect in the formation of atopy. Recently; there has been a growing interest in studying the role of intestinal microbiota in the pathogenesis of atopic dermatitis (AD). The review discusses the mechanisms of influence of the intestinal microbiome on the development and course of AD. Patients with AD have intestinal dysbiosis; characterized by a deficiency of lactobacilli; bifidobacteria and excessive growth of pathogenic and opportunistic microorganisms. Prospects for correction of the intestinal microbiome for the treatment of AD are presented.

全文:

受限制的访问

作者简介

A. Sysoeva

Penza Institute for Advanced Medical Training – Branch of the Russian Medical Academy of Continuous Professional Education

Email: sysojchik@yandex.ru
ORCID iD: 0009-0008-6981-464X
SPIN 代码: 1026-7270

Assistant; Department of Medical Microbiology and Laboratory Medicine

俄罗斯联邦, Penza

E. Orlova

Penza Institute for Advanced Medical Training – Branch of the Russian Medical Academy of Continuous Professional Education

Email: sysojchik@yandex.ru
ORCID iD: 0000-0002-3902-2018

Department of Allergology and Immunology with a Course in Dermatovenereology and Cosmetology

俄罗斯联邦, Penza

O. Levashova

Penza Institute for Advanced Medical Training – Branch of the Russian Medical Academy of Continuous Professional Education

Email: sysojchik@yandex.ru
ORCID iD: 0000-0002-8440-6598

Department of Medical Microbiology and Laboratory Medicine

俄罗斯联邦, Penza

Oksana Kulieva

Penza Institute for Advanced Medical Training – Branch of the Russian Medical Academy of Continuous Professional Education

编辑信件的主要联系方式.
Email: golikowa.oksana@yandex.ru
ORCID iD: 0009-0004-2452-747X

Assistant; Department of Medical Microbiology and Laboratory Medicine

俄罗斯联邦, Penza

Yu. Kandrashkina

Penza State University

Email: sysojchik@yandex.ru
ORCID iD: 0000-0002-5537-5729
俄罗斯联邦, Penza

参考

  1. Schlaeppi K.; Bulgarelli D. The plant microbiome at work. Mol Plant Microbe Interact. 2015;28(3):212–7. https://dx.doi.org/10.1094/MPMI-10-14-0334-FI
  2. Ingman W.V. The Gut Microbiome: A New Player in Breast Cancer Metastasis. Cancer Res. 2019;79(14):3539–41. https://dx.doi.org/10.1158/0008-5472
  3. Ryguła I.; Pikiewicz W.; Grabarek B.O.; et al. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int J Mol Sci. 2024;25(4):1984. https://dx.doi.org/10.3390/ijms25041984
  4. O’Neill C.A.; Monteleone G.; McLaughlin J.T.; Paus R. The gut-skin axis in health and disease: A paradigm with therapeutic implications. Bioessays. 2016;38(11):1167–76. https://dx.doi.org/10.1002/bies.201600008
  5. Langan S.M.; Irvine A.D.; Weidinger S. Atopic dermatitis. Lancet. 2020;396(10247):345–60. https://dx.doi.org/10.1016/S0140-6736(20)31286-1
  6. Крысанов И.С.; Крысанова В.С.; Карпов О.И. и др. Экономическое бремя тяжелого атопического дерматита в Российской Федерации. Качественная клиническая практика. 2019;(4):4–14. [Krysanov I.S.; Krysanova V.S.; Karpov O.I.; et al. Social-economic burden of severe atopic dermatitis in the Russian Federation. Good Clin. Pract. 2019;(4):4–14. (In Russ.)].
  7. Choo Z.Y.; Mehlis S.L.; Joyce J.C. Updates in atopic dermatitis for the primary care physician: A review of advances in the understanding and treatment of atopic dermatitis. Dis Mon 2024;70(4):101687. https://dx.doi.org/10.1016/j.disamonth.2024.101687
  8. Marras L.; Caputo M.; Bisicchia S.; et al. The Role of Bifidobacteria in Predictive and Preventive Medicine: A Focus on Eczema and Hypercholesterolemia. Microorganisms. 2021;9(4):836. https://dx.doi.org/10.3390/microorganisms9040836
  9. Pantazi A.C.; Nori W.; Kassim M.A.K.; et al. Gut microbiota profile and atopic dermatitis in the first year of life. J Med Life. 2024;17(10):948–52. https://dx.doi.org/10.25122/jml-2024-0287
  10. Reddel S.; Del Chierico F.; Quagliariello A.; et al. Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture. Sci Rep. 2019;9(1):4996. https://dx.doi.org/10.1038/s41598-019-41149-6
  11. Wrześniewska M.; Wołoszczak J.; Świrkosz G.; et al. The Role of the Microbiota in the Pathogenesis and Treatment of Atopic Dermatitis-A Literature Review. Int J Mol Sci. 2024;25(12):6539. https://dx.doi.org/10.3390/ijms25126539.
  12. Chiu C.Y.; Liao S.L.; Su K.W.; et al. Exclusive or Partial Breastfeeding for 6 Months Is Associated With Reduced Milk Sensitization and Risk of Eczema in Early Childhood: The PATCH Birth Cohort Study. Medicine. 2016;95:e3391. https://dx.doi.org/10.1097/MD.0000000000003391
  13. Fang Z.; Li L.; Zhang H.; et al. Gut Microbiota; Probiotics; and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review. Front Immunol. 2021;12:720393. https://dx.doi.org/10.3389/fimmu.2021.720393
  14. Листопадова А.П.; Кастрикина А.А.; Корнева А.А. и др. Особенности микробиома у детей с атопическим дерматитом в разные возрастные периоды. Медицина: теория и практика. 2023;8(1):47–53. [Listopadova A.P.; Kastrikina A.M.; Korneva A.A.; et al. Microbiome features in children with atopic dermatitis in different age periods. Medicine: Theor. Pract. 2023;8(1):47–53. (In Russ.)]. https://dx.doi.org/10.56871/MTP.2023.59.10.006
  15. Cait A.; Cardenas E.; Dimitriu P.A.; et al. Reduced genetic potential for butyrate fermentation in the gut microbiome of infants who develop allergic sensitization. J Allergy Clin Immunol. 2019;144(6):1638–47.e3. https://dx.doi.org/10.1016/j.jaci.2019.06.029
  16. Szöllősi A.G.; Gueniche A.; Jammayrac O.; et al. Bifidobacterium longum extract exerts pro-differentiating effects on human epidermal keratinocytes; in vitro. Exp Dermatol. 2017;26(1):92–4. https://dx.doi.org/10.1111/exd.13130
  17. Kim J.H.; Lee S.H.; Kang M.J.; et al. Host-microbial interactions between PTGR2 and Bifidobacterium in the early life gut of atopic dermatitis children. Pediatr Allergy Immunol. 2022;33(2):e13724. https://dx.doi.org/10.1111/pai.13724
  18. Fujimura K.E.; Sitarik A.R.; Havstad S.; et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22(10):1187–91. https://dx.doi.org/10.1038/nm.4176
  19. Fieten K.B.; Totté J.E.E.; Levin E.; et al. Fecal Microbiome and Food Allergy in Pediatric Atopic Dermatitis: A Cross-Sectional Pilot Study. Int. Arch. Allergy Immunol. 2018;175(1-2):77–84. https://dx.doi.org/10.1159/000484897
  20. Polkowska-Pruszyńska B.; Gerkowicz A.; Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases – an update. J Eur Acad Dermatol Venereol. 2020;34(3):455–64. https://dx.doi.org/10.1111/jdv.15951
  21. Sung M.; Choi Y.; Park H.; Huh CS. Gut Microbiome Characteristics in Mothers and Infants According to the Presence of Atopic Dermatitis. Biomed Res Int. 2022;2022:8145462. https://dx.doi.org/10.1155/2022/8145462
  22. Fan X.; Zang T.; Dai J.; et al. The associations of maternal and children’s gut microbiota with the development of atopic dermatitis for children aged 2 years. Front Immunol. 2022;13:1038876. https://dx.doi.org/10.3389/fimmu.2022.1038876
  23. Corbin K.D.; Carnero E.A.; Dirks B.; et al. Reprogrammingthe Human Gut Microbiome Reduces Dietary Energy Harvest. Res Sq [Preprint]. 2023;25:rs.3.rs-2382790. https://dx.doi.org/10.21203/rs.3.rs-2382790/v1
  24. Alam M.J.; Xie L.; Yap Y.A.; et al. Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens. 2022;11(6):642. https://dx.doi.org/10.3390/pathogens11060642.
  25. Bemark M.; Pitcher M.J.; Dionisi C.; Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol. 2024;45(3):211–23. https://dx.doi.org/10.1016/j.it.2024.01.006
  26. Bashir H.; Singh S.; Singh R.P.; et al. Age-mediated gut microbiota dysbiosis promotes the loss of dendritic cells tolerance. Aging Cell. 2023;22(6):e13838. https://dx.doi.org/10.1111/acel.13838
  27. Akagbosu B.; Tayyebi Z.; Shibu G.; et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature. 2022;610(7933):752–60. https://dx.doi.org/10.1038/s41586-022-05309-5.
  28. Moniaga C.S.; Tominaga M.; Takamori K. An Altered Skin and Gut Microbiota Are Involved in the Modulation of Itch in Atopic Dermatitis. Cells. 2022;11(23):3930. https://dx.doi.org/10.3390/cells11233930
  29. Viljanen M.; Pohjavuori E.; Haahtela T.; et al. Induction of inflammation as a possible mechanism of probiotic effect in atopic eczema-dermatitis syndrome. J Allergy Clin Immunol. 2005;115(6):1254–9. https://dx.doi.org/10.1016/j.jaci.2005.03.047
  30. Díaz-Garrido N.; Badia J.; Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles. 2021;10(13):e12161. https://dx.doi.org/10.1002/jev2.12161
  31. Жестков А.В.; Побежимова О.О. Влияние состава микробиоты кишечника на иммунопатогенез атопического дерматита у детей. Аллергология и иммунология в педиатрии. 2021;4:4–11. [Zhestkov A.V.; Pobezhimova O.O. Influence of intestinal microbiota on the immunopathogenesis of atopic dermatitis in children. Allergol Immunol Pediatr. 2021;(4):4–11. (In Russ.)]. https://dx.doi.org/10.53529/2500-1175-2021-4-4-11
  32. Ramos Meyers G.; Samouda H.; Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients. 2022;14(24):5361. https://dx.doi.org/10.3390/nu14245361
  33. Kimura I.; Ichimura A.; Ohue-Kitano R.; Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2020;100(1):171–210. https://dx.doi.org/10.1152/physrev.00041.2018
  34. Sanchez H.N.; Moroney J.B.; Gan H.; et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020;11(1):60. https://dx.doi.org/10.1038/s41467-019-13603-6
  35. Ahn J.; Lee S.; Kim B.; et al. Ruminococcus gnavus ameliorates atopic dermatitis by enhancing Treg cell and metabolites in BALB/c mice. Pediatr Allergy Immunol. 2022;33:e13678. https://doi.org/10.1111/pai.13678
  36. Yang W.; Yu T.; Huang X.; et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun. 2020;11(1):4457. https://dx.doi.org/10.1038/s41467-020-18262-6
  37. Pérez-Reytor D.; Puebla C.; Karahanian E.; García K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front Physiol. 2021;12:650313. https://dx.doi.org/10.3389/fphys.2021.650313
  38. Liu Y.; Du X.; Zhai S.; et al. Gut microbiota and atopic dermatitis in children: a scoping review. BMC Pediatr. 2022;22(1):323. https://dx.doi.org/10.1186/s12887-022-03390-3
  39. Stec A.; Sikora M.; Maciejewska M.; et al. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci. 2023;24(4):3494. https://dx.doi.org/10.3390/ijms24043494
  40. Su X.; Gao Y.; Yang R. Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells. 2022;11(15):2296. https://dx.doi.org/10.3390/cells11152296
  41. Yang L.; Li D.; Sun S.; et al. Dupilumab therapy improves gut microbiome dysbiosis and tryptophan metabolism in Chinese patients with atopic dermatitis. Int Immunopharmacol. 2024;131:111867. https://dx.doi.org/10.1016/j.intimp.2024.111867
  42. Park O.J.; Kwon Y.; Park C.; et al. Streptococcus gordonii: Pathogenesis and Host Response to Its Cell Wall Components. Microorganisms. 2020;8(12):1852. https://dx.doi.org/10.3390/microorganisms8121852
  43. Мухачева Д.А.; Разнатовский К.И.; Соболев А.В. Роль нейротрансмиттеров и микробиоты кишечника в патогенезе атопического дерматита. Клин. дерматология и венерология. 2023;22(3):302308. [Mukhacheva D.A.; Raznatovsky K.I.; Sobolev A.V. Role of neurotransmitters and intestinal microbiota in pathogenesis of atopic dermatitis. Clin Dermatol Venereol. 2023;22(3):302308 (In Russ.)]. https://dx.doi.org/10.17116/klinderma202322031302
  44. Kobayashi Y.; Kuhara T.; Oki M.; Xiao JZ. Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised; double-blind; placebo-controlled trial. Benef Microbes. 2019;10(5):511–20. https://dx.doi.org/10.3920/BM2018.0170
  45. Zaidi A.Z.; Moore S.E.; Okala S.G. Impact of Maternal Nutritional Supplementation during Pregnancy and Lactation on the Infant Gut or Breastmilk Microbiota: A Systematic Review. Nutrients. 2021;13(4):1137. https://dx.doi.org/10.3390/nu13041137
  46. Makrgeorgou A.; Leonardi-Bee J.; Bath-Hextall F.J. Probiotics for treating eczema. Cochrane Database Syst Rev. 2018;11(11):CD006135. https://dx.doi.org/10.1002/14651858.CD006135.pub3.
  47. Жукова О.В.; Касихина Е.И.; Острецова М.Н.; Немер А. Бактериофаги в терапии и профилактике атопического дерматита и дерматозов; осложненных вторичной бактериальной инфекцией. Мед. совет. 2022;(13):66–72. [Listopadova A.P.; Kastrikina A.M.; Korneva A.A.; et al. Microbiome features in children with atopic dermatitis in different age periods. Medicine: Theor. Pract. 2023;8(1):47–53. (In Russ.)]. https://dx.doi.org/10.21518/2079-701X-2022-16-13-66-72
  48. Гладков С.Ф.; Перевощикова Н.К. Возможности и потенциал бактериофагов в лечении атопического дерматита у детей. РМЖ. 2023;2:62–6. [Gladkov S.F.; Perevoshchikova N.K. Possibilities and potential of bacteriophages in the treatment of atopic dermatitis in children. RMJ. 2023;2:63–6. (In Russ.)].
  49. Гладков С.Ф.; Перевощикова Н.К.; Пичугина Ю.С. Опыт применения фаговой монотерапии в отношении пациента с атопическим дерматитом: клинический случай. Фарматека. 2022;29(14):116–9. [Gladkov S.F.; Perevoshchikova N.K.; Pichugina Y.S. Experience with phage monotherapy in a patient with atopic dermatitis: a clinical case. Farmateka. 2022;29(14):116–9. (In Russ.)]. https://dx.doi.org/10.18565/pharmateca.2022.14.116-119

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2025