PARP inhibitors in a personalized approach to the treatment of castration-resistant prostate cancer: clinical case

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Prostate cancer (PC) is one of the most common malignant neoplasms both in the world and in Russia. This disease is one of the leading causes of cancer mortality in the male population. Currently, the pathogenesis of PC has been studied in detail, which makes successful radical treatment possible in most cases, but on average, 10–20% of patients gradually develop castration-resistant (CRPC) and metastatic (mPC) prostate cancer. The mechanisms that contribute to the development of prostate cancer in the absence of androgen stimulation are currently being actively studied. A personalized approach in oncology makes it possible to timely identify specific mutations and correctly select the most effective therapy. This article attempts to summarize the current evidence on one such treatment approach, the use of PARP inhibitors. Drugs in this group are most effective against cancer with BRCA1/2 gene mutations and are also successfully used in ovarian, breast and pancreatic cancer. The presented clinical case of patient R., 67 years old with adenocarcinoma (Gleason 7), in whom BRCA2 mutations were identified based on the results of a genetic study, illustrates the successful use of olaparib in mCRPC. The use of personalized tests has made it possible to formulate clear indications for the use of PARP inhibitors in the treatment of mCRPC. Research in new areas of use of PARP inhibitors is currently relevant.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Gritskevich

Vishnevsky National Medical Research Center for Surgery; Patrice Lumumba Peoples’ Friendship University of Russia

Хат алмасуға жауапты Автор.
Email: grekaa@mail.ru
ORCID iD: 0000-0002-5160-925X
SPIN-код: 2128-7536

Dr. Sci. (Med.), Head of the Department of Surgical Treatment of Urological Diseases, Professor at the Educational Department, Vishnevsky National Medical Research Center for Surgery; Professor at the Department of Urology and Operative Nephrology with a Course of Oncourology, Patrice Lumumba Peoples’ Friendship University of Russia

Ресей, Moscow; Moscow

T. Byteman

Vishnevsky National Medical Research Center for Surgery; Patrice Lumumba Peoples’ Friendship University of Russia

Email: grekaa@mail.ru
ORCID iD: 0000-0002-3646-1664
SPIN-код: 4684-3230
Ресей, Moscow; Moscow

D. Monakov

Vishnevsky National Medical Research Center for Surgery; Patrice Lumumba Peoples’ Friendship University of Russia

Email: grekaa@mail.ru
ORCID iD: 0000-0002-9676-1802
SPIN-код: 2432-3491
Ресей, Moscow; Moscow

I. Rusakov

Russian Association of Urological Oncology

Email: grekaa@mail.ru
ORCID iD: 0000-0002-6751-2399
Ресей, Moscow

S. Mishugin

Loginov Moscow Clinical Research Center of the Moscow Healthcare Department

Email: grekaa@mail.ru
ORCID iD: 0000-0002-0945-2498
Ресей, Moscow

Әдебиет тізімі

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. (ред.). Злокачественные новообразования в России в 2021 году (заболеваемость и смертность). М., 2022. 252 с. [Kaprin A.D., Starinskiy V.V., Petrova G.V. (ed.). Malignant neoplasms in Russia in 2019 (morbidity and mortality). M.; 2020. 252 p. (In Russ.)]. URL: https://glavonco.ru/cancer_register/%D0%97%D0%B0%D0%B1%D0%BE%D0%BB_2019_%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80.pdf.
  2. Scher H.I., Morris M.J., Stadler W.M., et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34(12):1402–18. doi: 10.1200/JCO.2015.64.2702.
  3. Jun A., Zhang B., Zhang Z., et al. Novel Gene Signatures Predictive of Patient Recurrence‐Free Survival and Castration Resistance in Prostate Cancer. Cancers. 2021;13:917–44. doi: 10.3390/cancers13040917.
  4. Kirby M., Hirst C., Crawford E.D. Characterising the castration-resistant prostate cancer population: a systematic review. Int J ClinPract. 2011;65(11):1180–92. doi: 10.1111/j.1742-1241.2011.02799.x.
  5. Гафанов Р.А., Гармаш С.В., Кравцов И.Б., Фастовец С.В. Метастатический кастрационно-резистентный рак предстательной железы: современный взгляд на медикаментозную терапию и альтернативная регуляция опухолевых клеток. Онкоурология. 2018;14(1):107–16. [Gafanov R.A., Garmash S.V., Kravtsov I.B., Fastovets S.V. Metastatic castration-resistant prostate cancer: a current view on drug therapy and alternative tumor cell regulation. Cancer Urology. 2018;14(1):107-116. (In Russ.)]. doi: 10.17650/1726-9776-2018-14-1-107-116.
  6. Quigley D.A., Dang H.X., Zhao S.G., et al. Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 2018;174(3):758–69.e9. doi: 10.1016/j.cell.2018.06.039.
  7. Salameh A., Lee A.K., Cardo-Vila M., et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci U S A 2015;112:8403–408. doi: 10.1073/pnas.1507882112.
  8. Zhao S.G., Chen W.S., Li H., et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52:778–89. doi: 10.1038/s41588-020-0648-8.
  9. Chung J.H., Dewal N., Sokol E., et al. Prospective comprehensive genomic profiling of primary and metastatic prostate tumors. JCO. Precis Oncol. 2019;3:PO.18.00283. doi: 10.1200/PO.18.00283.
  10. Pritchard C.C., Mateo J., Walsh M.F., et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med. 2016;375(5):443–53. doi: 10.1056/NEJMoa1603144.
  11. Davey R.A., Grossmann M. Androgen receptor structure, function and biology: From bench to bedside. Clin Biochem Rev. 2016;37(1):3–15.
  12. Zarif J.C., Miranti C.K. The importance of non-nuclear AR signaling in prostate cancer progression and therapeutic resistance. Cell Signal. 2016;28(5):348–56. doi: 10.1016/j.cellsig.
  13. Hobisch A., Eder I.E., Putz T., et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 1998;58(20):4640–45.
  14. Ueda T., Mawji N.R., Bruchovsky N., Sadar M.D. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 2002;277(41):38087–94. doi: 10.1074/jbc.M203313200.
  15. Kim H.J., Lee W.J. Ligand-independent activation of the androgen receptor by insulin-like growth factor-I and the role of the MAPK pathway in skeletal muscle cells. Mol Cells. 2009;28(6):589–93. doi: 10.1007/s10059-009-0167-z.
  16. Kim H.J., Lee W.J. Insulin-like growth factor-I induces androgen receptor activation in differentiating C2C12 skeletal muscle cells. Mol Cells. 2009;28(3):189–94. doi: 10.1007/s10059-009-0118-8.
  17. Chandrasekar T., Yang J.C., Gao A.C., Evans C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 2015;4(3):365–80. Doi: 10.3978/j. issn.2223-4683.2015.05.02.
  18. Maitland N.J. Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced? Cancers (Basel). 2021;13(2):327. doi: 10.3390/cancers13020327.
  19. Arap W., Pasqualini R., Costello J.F. Prostate Cancer Progression and the Epigenome. N. Engl. J. Med. 2020;383(23):2287–90. doi: 10.1056/NEJMcibr2030475.
  20. Ge R., Wang Z., Montironi R., et al. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020;31(4):470–79. doi: 10.1016/j.annonc.2020.02.002.
  21. Pomerantz M.M., Qiu X., Zhu Y., et al. Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet. 2020;52(8):790–99. doi: 10.1038/s41588-020-0664-8.
  22. Waddington C.H. The strategy of the genes: a discussion of some aspects of theoretical biology. London: George Allen & Unwin, 1957. doi: 10.4324/9781315765471.
  23. Castro E., Romero-Laorden N., Del Pozo A., et al. PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol. 2019;37(6):490–503. doi: 10.1200/JCO.18.00358.
  24. Citarelli M., Teotia S., Lamb R.S. Evolutionary history of the poly-(ADP-ribose) polymerase gene family in eukaryotes. BMC. Evol Biol. 2010;10(1):308. doi: 10.1186/1471-2148-10-308.
  25. Долгашева Д.С., Певзнер А.М., Ибрагимова М.К. и др. Ингибиторы PARP1 в терапии рака молочной железы. Механизм действия и клиническое применение. Опухоли женской репродуктивной системы. 2020;16(1):55–64. doi: 10.17650/1994-4098-2020-16-1-55-64. [Dolgasheva D.S., Pevzner A.M., Ibragimova M.K., et al. PARP1 inhibitors in breast cancer therapy. Mechanism of action and clinical use. Tumors of female reproductive system. 2020;16(1):55–64. (In Russ.)].
  26. Ефремова А.С., Шрам С.И., Мясоедов Н.Ф. Доксорубицин вызывает временную активацию процесса поли-АДФ-рибозилирования белков в клетках H9c2. Доклады Академии наук. 2015;464(6):74–9. [Efremova A.S., Shram S.I., Myasoedov N.F. Doxorubicin causes transient activattion of protein poly-ADF-ribosylation in H9c2 cardiomyocytes. Rep Acad Sci. 2015;464(6):745–49. (In Russ.)]. doi: 10.7868/S0869565215300246.
  27. Langelier M.F., Pascal J.M. PARP-1 mechanism for coupling DNA damage detection to poly-(ADP-ribose) synthesis. Curr Opin Struc Biol. 2013;23(1):134–43. doi: 10.1016/j.sbi.2013.01.003.
  28. Alkhatib H.M., Chen D., Cherney B., et al. Cloning and expression of cDNA for human poly-(ADP-ribose) polymerase. Proc. NAS. 1987;84(5):1224–28. doi: 10.1073/pnas.84.5.1224.
  29. Konecny G.E., Kristeleit R.S. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current practice and future directions. Brit J Cancer. 2016;115(10):1157–73. doi: 10.1038/bjc.2016.311.
  30. Ramus S.J., Gayther S.A. The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol Oncol. 2009;3(2):138–50. doi: 10.1016/j.molonc.2009.02.001.
  31. Neuhausen S.L., Ozcelik H., Southey M.C., et al. BRCA1 and BRCA2 mutation carriers in the Breast Cancer Family Registry: an open resource for collaborative research. Breast Cancer Res Treat. 2009;116(2):379–86. doi: 10.1007/s10549-008-0153-8.
  32. Tripathi A., Balakrishna P., Agarwal N. PARP inhibitors in castration-resistant prostate cancer. Cancer Treat Res Communicat. 2020;24:1–3. doi: 10.1016/j.ctarc.2020.100199.
  33. De Bono J.S., Mateo J., Fizazi K., et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2020;382:2091–102. doi: 10.1056/NEJMoa1911440.
  34. Abida W., Campbell D., Patnaik A., et al. Preliminary results from the TRITON2 study of rucaparib in patients (pts) with DNA damage repair (DDR)-deficient metastatic castration- resistant prostate cancer (mCRPC): updated analyses. Ann Oncol. 2019;30:V327–8. doi: 10.1093/annonc/mdz248.
  35. De Bono J.S., Mehra N., Higano C.S., et al. TALAPRO-1: a phase II study of talazoparib (TALA) in men with DNA damage repair mutations (DDRmut) and metastatic castration-resistant prostate cancer (mCRPC) – First interim analysis (IA). J Clin Oncol. 2020;38(119). doi: 10.1200/JCO.2020.38.15_suppl.5566.
  36. Smith M.R., Sandhu S.K., Kelly W.K., et al. Prespecified interim analysis of GALAHAD: a phase II study of niraparib in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC) and biallelic DNA-repair gene defects (DRD). Ann Oncol. 2019;30:V884–85. doi: 10.1093/annonc/mdz394.
  37. Marshall C.H., Fu W., Wang H., et al. Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: association of Gleason score and tumor stage. Prostat Cancer Prostat Dis. 2019;22(1):59–65. doi: 10.1038/s41391-018-0086-1.
  38. Mohler J.L., Antonarakis E.S. NCCN Guidelines Updates: Management of Prostate Cancer. J Natl Compr Canc Netw. 2019;17(5.5):583–86. doi: 10.6004/jnccn.2019.5011.
  39. URL: https://www.pharmjournal.ru/jour/announcement/view/413
  40. Polkinghorn W.R., Parker J.S., Lee M.X., et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 2013;3(11):1245–53. doi: 10.1158/2159-8290.CD-13-0172.
  41. Asim M., Tarish F., Zecchini H.I., et al. Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nat Commun. 2017;8(1):374–84. doi: 10.1038/s41467-017-00393-y.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>