Increased intestinal permeability and its role in the development of cardiovascular diseases


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The review article considers the role of increased intestinal permeability in the development of cardiovascular diseases such as arterial hypertension, chronic heart failure, arteriosclerotic lesions of the arteries, and discusses the relationship between increased intestinal permeability and endothelial dysfunction. The possibility of correcting increased intestinal permeability is also considered; in this context, the mechanism of action and pleiotropic effects of the gastro- and enteroprotector rebamipide, which is currently recognized as the only corrector of increased intestinal permeability, are discussed.

Texto integral

Acesso é fechado

Sobre autores

Natalia Vorobyeva

Pirogov Russian National Research Medical University, Russian Gerontological Scientific and Clinical Center

Email: natalyavorobjeva@mail.ru
Dr. Sci. (Med.), Head of the Laboratory of Cardiovascular Aging Moscow, Russia

O. Tkacheva

Pirogov Russian National Research Medical University, Russian Gerontological Scientific and Clinical Center

Moscow, Russia

Bibliografia

  1. Moreira A.P, Texeira T.F., Ferreira A.B., et al. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012;108(5):801-9. doi: 10.1017/S0007114512001213.
  2. Fasano A. Zonulin, regulation of tight junctions, and autoimmune diseases. Ann N.Y Acad Sci. 2012;1258(1):25-33. doi: 10.1111/j.1749-6632.2012.06538.x.
  3. Kim S., Goel R., Kumar A., et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701-18. doi: 10.1042/CS20180087.
  4. Pasini E, Aquilani R., Testa C., et al. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail. 2016;4(3):220-27. Doi: 10.1016/j. jchf.2015.10.009.
  5. Sandek A, Bjarnason I., Volk H.D., et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80-5. Doi: 10.1016/j. ijcard.2010.12.016.
  6. Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2014;35(7):426-30. Doi: 10.1093/ eurheartj/eht271.
  7. Jin M., Qian Z., Yin J., et al. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med. 2019;23(4):2343-50. Doi: 10.1111/ jcmm.14195.
  8. Bielinska K., Radkowski M., Grochowska M., et al. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Nutrition. 2018;54:33-9. doi: 10.1016/j.nut.2018.03.004.
  9. Jaworska K., Huc T., Samborowska E., et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One. 2017;12(12):e0189310. doi: 10.1371/journal.pone.0189310.
  10. Chen Y.Y., Chen D.Q., Chen L., et al. Microbiometabolome reveals the contribution of gut-kidney axis on kidney disease. J Transl Med. 2019;17(1):5. doi: 10.1186/s12967-018-1756-4.
  11. Heianza Y., Ma W., Manson J.E., et al. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc. 2017;6(7). doi: 10.1161/JAHA.116.004947.
  12. Widmer R.J., Flammer A.J., Lerman L.O., Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128(3):229-38. Doi: 10.1016/j. amjmed.2014.10.014.
  13. Dumas M.E., Maibaum E.C., Teague C., et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem. 2006;78(7):2199-208. doi: 10.1021/ac0517085.
  14. Jaworska K., Hering D., Mosieniak G., et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins (Basel). 2019;11(9). doi: 10.3390/toxins11090490.
  15. Carnevale R., Nocella C., Petrozza V, et al. Localization of lipopolysaccharide from Escherichia Coli into human atherosclerotic plaque. Sci Rep. 2018;8(1):3598. doi: 10.1038/s41598-018-22076-4.
  16. Wang J., Si Y., Wu C., et al. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-kappaB pathway. Lipids Health Dis. 2012;11:139. doi: 10.1186/1476-511X-11-139.
  17. Оганов Р.Г., Симаненков В.И., Бакулин И.Г. и др. Коморбидная патология в клинической практике. Алгоритмы диагностики и лечения. Кардиоваскулярная терапия и профилактика. 2019;18(1):5-66. Doi: https://doi. org/10.15829/1728-8800-2019-1-5-66
  18. Choe J.Y., Park K.Y., Дee S.J., et al. Rebamipide inhibits tumor necrosis factor-a-induced interleukin-8 expression by suppressing the NF-kB signal pathway in human umbilical vein endothelial cells. Inflamm Res. 2010;59(12):1019-26. doi: 10.1007/s00011-010-0221-5.
  19. Naito Y., Yoshikawa T., Tanigawa T., et al. Hydroxyl radical scavenging by rebamipide and related compounds: electron paramagnetic resonance study. Free Radic Biol Med. 1995;18(1):117-23. doi: 10.1016/0891-5849(94)00110-6.
  20. Tarnawski A.S., Chai J., Pai R., Chiou S.K. Rebamipide activates genes encoding angiogenic growth factors and Cox2 and stimulates angiogenesis: a key to its ulcer healing action? Dig Dis Sci. 2004;49(2):202-9. doi: 10.1023/b:ddas.0000017439.60943.5c.
  21. Jang H., Park S., lee J., et al. Rebamipide alleviates radiation-induced colitis through improvement of goblet cell differentiation in mice. J Gastroenterol Hepatol. 2018;33(4):878-86. Doi: 10.1111/ jgh.14021.
  22. Kimura K., Morita Y., Orita T., et al. Protection of human corneal epithelial cells from ФНО-а-induced disruption of barrier function by rebamipide. Invest Ophthalmol Vis Sci. 2013;54(4):2572-760. doi: 10.1167/iovs.12-11294.
  23. Kase S., Shinohara T., Kase M., Ishida S. Effect of topical rebamipide on goblet cells in the lid wiper of human conjunctiva. Exp Ther Med. 2017;13(6):3516-22. Doi: 10.3892/ etm.2017.4390.
  24. Fukuda M., Shibata S., Shibata N., et al. Polyvinyl Alcohol-Iodine Induced Corneal Epithelial Injury in Vivo and Its Protection by Topical Rebamipide Treatment. PLoS One. 2018;13(11): e0208198.
  25. Chaitanya B., Pai K.M., Yathiraj P.H., et al. Rebamipide gargle in preventive management of chemo-radiotherapy induced oral mucositis. Oral Oncol. 2017;72:179-82. Doi: 10.1016/j. oraloncology.2017.07.024.
  26. Chou R.H.,Chen C.Y.,Chen I.C.,et al. Trimethylamine N-Oxide, Circulating Endothelial Progenitor Cells, and Endothelial Function in Patients with Stable Angina. Sci Rep. 2019;9(1):4249. Doi: 10.1038/ s41598-019-40638-y.
  27. Jhun J., Kwon J.E., Kim S.Y., et al. Rebamipide ameliorates atherosclerosis by controlling lipid metabolism and inflammation. PloS One. 2017;12(2):e0171674. doi: 10.1371/journal. pone.0171674

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2020

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies