Influence of cooling of high temperature vane systems on efficiency gas turbine units regarding working substance specific heat capacity dependence on temperature

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Gas turbine units (GTU) are widely used in power plants, shipbuilding, aerospace and other industry sectors. Main performance indicators of units are effective cycle efficiency and useful internal power. It is known that gas turbine power grows on 15–25% for each 100°C of turbine inlet temperature increases in range of 1000–1400 K, which makes it possible to save fuel significantly. Further growth of turbine inlet temperature demands more drastic increase of cooling air flow rate for the sake of cooling of the GTU flow channel, that leads to decrease of effective efficiency of a GTU. Consequently, the research of cooling and heat capacity properties influence needs to be done in order to improve gas turbine unit performance in the turbine inlet temperature range of 1000–1400 K.

AIMS: Issues of influence of cooling of high temperature GTUs as well as issues of influence of working substance specific heat capacity dependence on temperature are studied in the article.

METHODS: The study contains comparative analysis of four gas turbine units (GTU) such as: the 3,13 MW Teeda GTU (Iran), the 4,13 MW UEC Perm Engines GTU-4P (Russia), the 5,1 MW Siemens SGT-100 (Germany) and the 5,67 MW Solar Turbines TAURUS 60 (USA).

RESULTS: As a result, dependencies of efficiency, specific effective work and GTU useful work coefficient on cooling were obtained. Working substance specific heat capacity dependence on temperature was considered in order to increase accuracy of calculations.

CONCLUSIONS: The completed calculation study allows judging on perfection of the heat layout of GTU, the flow channel of GTU and making a comparison of them for the sake of further optimization of operational processes.

Full Text

Restricted Access

About the authors

Mehdi Basati Panah

Peter the Great Saint Petersburg Polytechnic University

Email: mehdibp.energy@gmail.com
ORCID iD: 0000-0001-5566-8508
SPIN-code: 6388-8007

Postgraduate Student

Russian Federation, Saint Petersburg

Viktor A. Rassokhin

Peter the Great Saint Petersburg Polytechnic University

Email: v-rassokhin@yandex.ru
ORCID iD: 0000-0003-4609-4252
SPIN-code: 3815-2975

Dr. Sci. (Tech.), Professor

Russian Federation, Saint Petersburg

Viktor V. Barskov

Peter the Great Saint Petersburg Polytechnic University

Email: viktorbarskov@mail.ru
ORCID iD: 0000-0001-6914-8212
SPIN-code: 3312-9427

Cand. Sci. (Tech.), Associate Professor

Russian Federation, Saint Petersburg

Egor I. Okunev

Peter the Great Saint Petersburg Polytechnic University

Email: okunev_ei@spbstu.ru
ORCID iD: 0000-0001-7632-5125
SPIN-code: 8406-3536

Senior Lecturer

Russian Federation, Saint Petersburg

Mikhail A. Laptev

Peter the Great Saint Petersburg Polytechnic University

Email: mikhail.laptev@outlook.com
ORCID iD: 0000-0001-6045-3288
SPIN-code: 2315-1330

Postgraduate Student

Russian Federation, Saint Petersburg

Nikolai N. Kortikov

Peter the Great Saint Petersburg Polytechnic University

Email: kortikov_nn@spbstu.ru
ORCID iD: 0000-0002-7569-3492
SPIN-code: 6823-2319

Cand. Sci. (Tech.), Professor

Russian Federation, Saint Petersburg

Van Chung Chu

Peter the Great Saint Petersburg Polytechnic University

Author for correspondence.
Email: turbotechvn95@gmail.com
ORCID iD: 0000-0001-7029-409X
SPIN-code: 8214-5919

Postgraduate Student

Russian Federation, Saint Petersburg

Bowen Gong

Peter the Great Saint Petersburg Polytechnic University

Email: outbowenlook@outlook.com
ORCID iD: 0000-0001-9818-7165
SPIN-code: 2328-8030

Postgraduate Student

Russian Federation, Saint Petersburg

References

  1. Shailendra N. Basic aspects of the gas turbine. In: Murshed SMS, Lopes MM. Heat exchangers: design, experiments, and simulation. Intech. 2017. http://dx.doi. org/10.5772/67323
  2. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bulletin. 2012;37(10):891–898. doi: 10.1557/mrs.2012.232
  3. Arsen’ev LV, Tyryshkin VG. Gazoturbinnye ustanovki. Konstruktsii i raschet: Spravochnoe posobie. Tyryshkina VG editor. Leningrad: Mashinostroenie; 1978. (In Russ).
  4. Manushin EA. Gazovye turbiny: Problemy i perspektivy. Moscow: Energoatomizdat; 1986. (In Russ).
  5. Manushin EA, Mikhal’tsev VE, Chernobrovkin AP. Teoriya i proektirovanie gazoturbinnykh i kombinirovannykh ustanovok. Moscow: Mashinostroenie; 1977. (In Russ).
  6. Podobuev YuS. Vybor parametrov i termogazodinamicheskii raschet aviatsionnykh gazoturbinnykh dvigatelei. Leningrad: LPI; 1981. (In Russ).
  7. Arsen’ev LV, Tyryshkin VG, Bogov IA et al. Statsionarnye gazoturbinnye ustanovki. Arsen’eva LV, Tyryshkina VG, editors. Leningrad: Mashinostroenie; 1989. (In Russ).
  8. Khodak EA. Termodinamicheskie svoistva gaza. Leningrad: LPI; 1986. (In Russ).
  9. Raschet i konstruirovanie mashin; Teploobmennye apparaty tekhnologicheskikh podsistem turboustanovok. In: Aronson KE, Brezgin VI, Brodov YuM, et al. Mashinostroenie: Entsiklopediya v 40 t. Moscow: Innovatsionnoe mashinostroenie; 2016. (In Russ).
  10. Raschet i konstruirovanie mashin; turbinnye ustanovki. In: Vinogradov NN, Vladimirskii OA, Gavrilov SN, et al. Mashinostroenie: Entsiklopediya v soroka tomakh. Moscow: Mashinostroenie; 2015. (In Russ).
  11. T. M. m. e. Company. Overview of the technical condition of the TEEDA gas turbine unit, 5th ed. Tehran, 2015.
  12. Kitenko SR. Opredelenie effektivnosti primeneniya gazoturbinnykh ustanovok. Teoriya. Praktika. Innovatsii. 2016;(11):70–74. (In Russ).
  13. Medvedev SD, Balyakin VB. Ispol’zovanie konvertirovannykh aviatsionnykh gazoturbinnykh dvigatelei i tekhnologii. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta im. ak. SP Koroleva (natsional’nogo issledovatel’skogo universiteta). 2009;(3):292–298. (In Russ).
  14. Zhang L, Li W, Xiong Y. SGT-100 Gas Turbine Control System Localization Upgrading and Transformation. Science and Technology Communication. 2016;8(12). [accessed 2022 Aug 22]. Available from: http://d.g.wanfangdata.com.hk/Periodical_kjcb201612122.aspx
  15. Schastlivtsev AI, Nazarova OV. Hydrogen–air energy storage gas-turbine system. Thermal Engineering. 2016;63(2):107–113. doi: 10.1134/s0040601516010109
  16. Soares C. Gas Turbines: A Handbook of Air, Land and Sea Applications. Oxford: Butterworth-Heinemann; 2014.
  17. Paramonov AM, Rezanov EM. Povyshenie effektivnosti regeneratsii teplovoi energii v gazoturbin-noi tekhnologii. Problemy mashinovedeniya. 2020:184–191. (In Russ).
  18. Solar Taurus ‘To Go’ The Solar Taurus 60 Mobile Power Unit provides 5.2 MW of on-site power. Turbomach; 2001.
  19. Van Leuven V. Solar Turbines Incorporated “Taurus 60” Gas Turbine Development. In: Volume 3: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations. ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. June 13–16, 1994, The Hague, Netherlands. ASME, 1994. doi: https://doi.org/10.1115/94-GT-115.
  20. Qi Bojun, Liu Yansheng, Shengwei. Common Faults and Treatment Methods of Taurus 60 Gas Turbine in Operation. Gas Turbine Technology. 2003;16(3). doi: 10.3969/j.issn.1009-2889.2003.03.015
  21. Li Jian PLC in Taurus 60 gas turbine slipping oil system. Automation and Instrumentation. 2003;5. doi: 10.3969/j.issn.1001-9227.2003.05.005
  22. Rassokhin VA. Raschet teplovoi skhemy GTU: Uchebnoe posobie. Saint Petersburg: Leningradskii gosudarstvennyi tekhnicheskii universitet; 1992.
  23. Rassokhin VA. Raschet teplovoi skhemy gazoturbinnoi ustanovki: uchebnoe posobie. Saint Petersburg: Izd-vo Politekhnicheskogo universiteta; 2018.
  24. Laptev MA, Barskov VV, Rassokhin VA. Perspektivnye gazoturbinnye ustanovki s vneshnim podvodom teploty, Sovremennye tekhnologii i ekonomika energetiki: In: Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii; 2021 Apr 29. Saint Petersburg. Sankt-Peterburg: Peter the Great St. Petersburg Polytechnic University; 2021. p. 142–144. (In Russ).
  25. Rassokhin VA, Barskov VV, Yadykin VK, et al. Svidetel’stvo o gosudarstvennoi registratsii pro-grammy dlya EVM № 2019663503 RF. Programma rascheta maloraskhodnykh odnostu-penchatykh turbin konstruktsii LPI osevogo i radial’nogo tipa (ONE1): № 2019662301: zayavl. 08.10.2019: opubl. 17.10.2019. (In Russ).
  26. Rassokhin VA, Barskov VV, Yadykin VK, Smetankin AI. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2019663417 RF. Programma rascheta maloraskhodnykh dvukh i bolee stupenchatykh turbin konstruktsii LPI osevogo i radial’nogo tipa (TWO2): № 2019662344: zayavl. 08.10.2019: opubl. 16.10.2019. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Timeline of growth of turbine inlet temperature for different turbine vane cooling technologies [1, 2].

Download (232KB)
3. Fig. 2. The real cycle of a simple type single-shaft GTU: H–1* is the isothermal process of working substance flow in an inlet; 1–2t is the adiabatic process of compression in a compressor; 1–2* is the polytropic process of compression in a compressor; 2*–3* is the heat supply process in a combustion chamber; 3*–4t is the isoentropic process of expansion in a turbine; 3*–4* is the polytropic process of expansion in a turbine; 4*–H1 is the isothermal process of working substance flow in an outlet; H1 – H is the isobaric process of heat dissipation.

Download (100KB)
4. Fig. 3. The cycle of a GTU with a cooled turbine: 3–4tq is the frictionless expansion with heat dissipation; 3–4t is the isoentropic process of expansion in a turbine; 3–4q is the expansion with friction and heat dissipation; 3–4a is the adiabatic process of expansion.

Download (108KB)
5. Fig. 4. The structural scheme of mathematical model of GTU performance indicators calculation.

Download (127KB)
6. Fig. 5, a. The graph of effective efficiency depending on effective specific work at various pressure increase ratios.

Download (103KB)
7. Fig. 5, b. The graph of effective work coefficient depending on pressure increase ratio.

Download (81KB)
8. Fig. 6, a. The graph of effective efficiency depending on effective specific work at various pressure increase ratios.

Download (101KB)
9. Fig. 6, b. The graph of effective work coefficient depending on pressure increase ratio.

Download (85KB)
10. Fig. 7, a. The graph of effective efficiency depending on effective specific work at various pressure increase ratios.

Download (112KB)
11. Fig. 7, b. The graph of effective work coefficient depending on pressure increase ratio.

Download (94KB)
12. Fig. 8, a. The graph of effective efficiency depending on effective specific work at various pressure increase ratios.

Download (122KB)
13. Fig. 8, b. The graph of effective work coefficient depending on pressure increase ratio.

Download (84KB)
14. Fig. 9, a. The graph of available turbine power (in MW) to fuel consumption (in kg/s) ratio depending on pressure increase ratio in a compressor.

Download (112KB)
15. Fig. 9, b. The graph of useful internal power of GTU (in MW) to fuel consumption (in kg/s) ratio depending on pressure increase ratio in a compressor.

Download (119KB)

Copyright (c) 2023 Eco-Vector



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies