Study of pump separator for gas-liquid mixture for sanitary compartment of space station



Cite item

Full Text

Abstract

The paper evaluated the possibility of using a centrifugal pump separator for gas-liquid mixture MNR-NS as part of the sanitary-hygienic water recovery system of a space station. The results of the study of the pump separator are presented in the paper.

Full Text

Жизнедеятельность экипажа на космическом корабле поддерживается комплексом систем жизнеобеспечения, основными задачами которых являются снабжение космонавтов кислородом, водой и пищей, очистка атмосферы от вредных примесей, поддержание параметров микроклимата, осуществление сбора и удаления отходов. Реализация перспективных орбитальных и межпланетных полетов связана с совершенствованием систем жизнеобеспечения (СЖО) экипажа. Одной из важнейших составляющих СЖО являются системы водообеспечения (СВО) [1]. Эти системы должны осуществлять максимальное извлечение и регенерацию воды из водосодержащих продуктов жизнедеятельности человека и биотехнического комплекса, обеспечивая потребности экипажа в воде с минимальным добавлением воды из запасов. Одним из решающих факторов совершенства систем регенерации является максимально возможный коэффициент извлечения воды. Работы по созданию систем регенерации воды проводились Всесоюзным научно-исследовательским и конструкторским институтом химического машиностроения НИИхиммаш (г. Москва) в содружестве с РКК «Энергия» и Институтом медико-биологических проблем (ИМБП). В результате проведенных фундаментальных исследований и опытно-конструкторских работ были разработаны эффективные малоэнергоемкие и малоотходные технологии, основанные на физико-химических процессах, и созданы и внедрены на ОКС «Салют», «Мир» и МКС летные системы регенерации воды из конденсата атмосферной влаги и мочи (урины) [2]. На перспективных космических станциях предполагается введение оборудования для обеспечения космонавтов санитарно-гигиеническими процедурами. В настоящее время на борту космических летательных аппаратов отсутствует отсек водных процедур. Экипажи космических станций осуществляют санитарно-гигиенические процедуры при помощи влажных салфеток и полотенец. При этом на доставку чистых салфеток и полотенец расходуется большое количество средств. В связи с расширением границ изучения космического пространства планируется экспедиция астронавтов на планету Марс. В ходе этой экспедиции экипаж космического летательного аппарата должен существовать практически автономно с минимальным потреблением ресурсов из запасов. Поэтому на перспективных космических кораблях планируется введение санитарно-гигиенического отсека для осуществления экипажем водных процедур. Первостепенными задачами являются мытье рук, лица и тела. На эти процедуры по ГОСТ Р 50804-95 «Среда обитания космонавта в пилотируемом космическом аппарате. Общие медико-технические требования» требуется от 0,2 до 7 литров воды на космонавта в сутки, в среднем 36 литров в сутки или 13140 литров в год для экипажа из 6 человек [3]. В перспективе в состав санитарно-гигиенического отсека войдет оборудование для стирки одежды, сауна и т.д. Для осуществления очистки загрязненной воды, образующейся после санитарно-гигиенических процедур, в состав санитарно-гигиенического отсека наряду со средствами помывки необходимо введение системы регенерации санитарно-гигиенической воды. Предполагается, что данная система не будет объединена с системами питьевого водоснабжения, а будет иметь свой собственный цикл очистки, что позволит снизить расходы на регенерацию воды, так как загрязненная вода будет очищаться до требований к санитарно-гигиенической воде. Для обеспечения большого ресурса работы системы очистку загрязненной санитарно-гигиенической воды целесообразно проводить мембранными методами. При введении системы регенерации загрязненной санитарно-гигиенической воды в состав санитарно-гигиенического отсека станет возможным проведение санитарно-гигиенических процедур практически без потребления ресурсов из запасов, что сделает возможным осуществление дальних автономных полетов, а также существенно сократит затраты на содержание санитарно-гигиенического отсека орбитальных космических станций. Научно-исследовательским и конструкторским институтом химического машиностроения ОАО "НИИхиммаш" разрабатывается принципиально новая система регенерации загрязненной санитарно-гигиенической воды (см. рисунок 1). Рисунок 1. Система регенерации загрязненной санитарно-гигиенической воды: ОВП - оборудование для водных процедур; УЗВ - узел загрязненной воды; УМО - узел мембранной очистки; УОВ - узел очищенной воды; ЦНС - центробежный насос-сепаратор; КЭ - электромагнитный клапан; ЕЗВ - емкость для приема загрязненной воды; Ф - фильтр; В - вентилятор Система работает следующим образом: загрязненная вода транспортируется из отсека водных процедур потоком воздуха, отделяется от него в сепараторе и накапливается в узле загрязненной воды УЗВ. В системе производится очистка воды мембранными методами и реализована схема тангенциальной фильтрации, при которой загрязненная вода циркулирует по циркуляционному контуру и омывает мембрану в узле мембранной очистки УМО. Часть воды проходит через мембрану, консервируется и накапливается в узле очищенной воды УОВ. По запросу из отсека водных процедур начинается подача воды с дополнительным обеззараживанием перед поступлением в ОВП. В условиях микрогравитации на борту космического летательного аппарата необходимо применение специальных технических средств для сбора и транспортировки загрязненной воды. Загрязненная вода после проведения санитарно-гигиенических процедур транспортируется из отсека водных процедур потоком воздуха и отделяется от него. Одной из важнейших задач является сепарация жидкости из газожидкостного потока. При этом должно обеспечиваться полное отделение жидкости от транспортирующего ее газа, а также газа от жидкости. Необходимость условия отсутствия газа в отделяемой жидкости обусловлена тем, что загрязненную санитарно-гигиеническую воду предполагается очищать (регенерировать) мембранными методами, при которых наличие газа в жидкости при проведении процесса в условиях микрогравитации не допускается. При g→0 отсутствует гравитационный механизм разделения фаз газ-жидкость, поэтому при сепарации жидкости из газожидкостного потока преимущественно используются силы поверхностного натяжения и инерционные силы. В условиях микрогравитации существует три принципиально возможных метода сепарации. Они основаны на использовании влагоудерживающего пористого материала, капиллярно-пористых перегородок и центробежных аппаратов [4]. В связи с большим расходом газожидкостной смеси, поступающей из отсека водных процедур, а также наличием в загрязненной жидкости взвешенных частиц применение для сепарации смачиваемых капиллярно-пористых стенок не представляется возможным. Применение для сепарации хорошо смачиваемого влагоудерживающего материала ограничивается трудностями автоматизации процесса извлечения жидкости. Исходя из этого оптимальным для разделения фаз «газ - жидкость» в рассматриваемых условиях является применение центробежного сепаратора. Важной задачей является унификация изделий, используемых в системах жизнеобеспечения. Поэтому для исследования был выбран центробежный насос-сепаратор со встроенным черпаковым насосом ЦНС, успешно эксплуатирующийся в составе системы приема и консервации урины СПК-УМ на МКС. Схема центробежного насоса-сепаратора ЦНС приведена на рисунке 2. Рисунок 2. Схема центробежного насоса-сепаратора со встроенным черпаковым насосом: 1 - вращающийся корпус (ротор); 2 - опоры; 3 - отбойник; 4 - черпаковый насос; 5 - кольцо жидкости Центробежный насос-сепаратор со встроенным черпаковым насосом работает следующим образом. Газожидкостная смесь поступает в аппарат и закручивается за счет сил трения. Вследствие возникновения центробежного ускорения жидкость из потока и с поверхности отбойника 3 отбрасывается на стенки корпуса (ротора) 1, транспортируется в направлении увеличения его радиуса и собирается в жидкостное кольцо 5, откуда отводится черпаковым насосом 4 [2, 4]. Под избыточным давлением, возникающем в центробежном поле, жидкость выводится из аппарата через неподвижную обтекаемую лопатку с каналом, называемую черпаком 4, которая вместе с элементами ротора представляет собой черпаковый насос [4]. Основной задачей исследования было определение возможности использования центробежного насоса-сепаратора ЦНС в составе системы регенерации загрязненной санитарно-гигиенической воды космической станции. С этой целью был проведен эксперимент с имитатором санитарно-гигиенической воды, загрязненной моющим средством, содержащим поверхностно активные вещества (ПАВ), и определены гидравлические характеристики центробежного насоса-сепаратора. Так как для санитарно-гигиенических процедур предполагается использовать жидкое мыло общего применения, при транспортировке загрязненной санитарно-гигиенической воды будет образовываться большое количество пены. В связи с этим экспериментально проверялось наличие уноса пены с воздушным потоком из центробежного насоса-сепаратора ЦНС. Для проведения эксперимента был приготовлен имитатор санитарно-гигиенической воды, загрязненной жидким мылом Aura, содержащим поверхностно-активные вещества (ПАВ). Концентрация моющего средства составила: 2 - 3 грамма на 300 мл воды. По оценочным данным именно такое количество воды и моющего средства расходуется при мытье рук, что соответствует нормативам ГОСТ Р 50804-95. Во время проведения эксперимента при различных значениях расхода воздуха через сепаратор за время τ=30 с равномерно вводилось 330 мл имитатора санитарно-гигиенической воды, загрязненной моющим средством, что обеспечивало расход жидкости G=40 л/ч. Во время введения имитатора санитарно-гигиенической воды через прозрачную трубку визуально контролировался унос пены с воздушным потоком из сепаратора. При значениях расхода воздуха Q = 272, 312 и 333 л/мин уноса пены с воздушным потоком не наблюдалось. Результаты наблюдений представлены в таблице 1. Таблица 1. Результаты наблюдений за уносом пены с воздушным потоком из сепаратора при различных значениях расхода воздуха В связи с положительными результатами по проверке отсутствия уноса пены с воздушным потоком был определен ряд гидравлических характеристик насоса-сепаратора ЦНС, среди которых напор жидкости, создаваемый в зоне ее отвода (на входе в черпак) при отсутствии отвода жидкости из насоса-сепаратора. Напор, создаваемый жидкостью в зоне отвода, складывается из статической и динамической составляющих. Статический напор [4, 5]: . (1) Динамический напор: , (2) где - коэффициент, представляющий собой отношение скорости проскальзывания кольца жидкости к скорости вращения ротора : . (3) Общий напор на входе в черпаковый насос принимает вид: , (4) где Н0 - максимальный напор при отсутствии расхода жидкости через черпаковый отвод. При проведении опыта напор на черпак при отсутствии слива жидкости был найден экспериментально. Зависимости напора в зоне отвода при отсутствии слива жидкости от высоты кольца жидкости (количества жидкости) в роторе сепаратора, полученные в результате расчетов (в идеальном случае) по зависимости (4) и в результате эксперимента представлены на рисунке 3. Рисунок 3. Зависимость напора в зоне отвода при отсутствии слива жидкости от высоты кольца жидкости (количества жидкости) в роторе сепаратора При сопоставлении полученных расчетных и экспериментальных данных было выявлено наличие значительного проскальзывания кольца жидкости относительно ротора насоса-сепаратора ЦНС, была построена зависимость коэффициента проскальзывания от высоты кольца жидкости (количества жидкости) в роторе насоса-сепаратора (рисунок 4). Рисунок 4. Зависимость коэффициента проскальзывания от высоты кольца жидкости (количества жидкости) в роторе насоса-сепаратора Из графика на рисунке 4 видно, что насос-сепаратор ЦНС переходит в автомодельный режим работы при высоте кольца жидкости в роторе h≥16 мм. При этом коэффициент проскальзывания φ принимает постоянное значение, равное 0,85. Рисунок 5. Зависимость расхода жидкости от гидравлического сопротивления канала при максимальном заполнении сепаратора С учетом полученного значения коэффициента проскальзывания в автомодельном режиме была построена расчетная кривая напоров (штриховая линия на рисунке 3). Данная кривая близка по значениям к экспериментальной, следовательно, полученное значение коэффициента проскальзывания может быть использовано при расчетах насосов-сепараторов данной конструкции. Также была получена зависимость расхода перекачиваемой жидкости от гидравлического сопротивления отводного канала. Она представлена на рисунке 5. Из графика видно, что подача насоса-сепаратора ЦНС уменьшается при увеличении гидравлического сопротивления канала, и истечение воды прекращается при достижении значения гидравлического сопротивления в канале ΔP = 0,75·105 Па (7500 мм вод. ст.). Выводы Экспериментально подтверждено отсутствие уноса пены с воздушным потоком из насоса сепаратора ЦНС при расходе воздуха Q≤333 л/мин. Уточнена зависимость коэффициента проскальзывания кольца жидкости относительно ротора насоса-сепаратора ЦНС от количества жидкости в роторе, а также определено, что в автомодельном режиме работы насоса-сепаратора коэффициент проскальзывания φ принимает постоянное значение, равное 0,85. Установлено, что встроенный черпаковый насос создает напор жидкости до 0,75·105 Па. Насос-сепаратор ЦНС может обеспечить достаточное отведение жидкости (Q ≥ 40 л/ч) при сопротивлении отводного канала не более 0,62·105 Па. Центробежный насос-сепаратор ЦНС может быть использован для разделения газожидкостной смеси в условиях микрогравитации в составе системы регенерации загрязненной санитарно-гигиенической воды.
×

About the authors

N. A Salnikov

Moscow State University of Mechanical Engineering (MAMI); NIIkhimmash JSC

Email: nikols_l53@mail.ru
+7 499 267-07-04

L. S Bobe

Moscow State University of Mechanical Engineering (MAMI); NIIkhimmash JSC

Email: nikols_l53@mail.ru
Dr. Eng., Prof.; +7 499 267-07-04

N. E Nikolaykina

Moscow State University of Mechanical Engineering (MAMI); NIIkhimmash JSC

Email: nikols_l53@mail.ru
Ph.D., Prof.; +7 499 267-07-04

N. V Rykhlov

Moscow State University of Mechanical Engineering (MAMI); NIIkhimmash JSC

Email: nikols_l53@mail.ru
Ph.D.; +7 499 267-07-04

References

  1. Бобе Л.С., Гаврилов Л.И., Кочктков А.А., Курмазенко Э.А., Андрейчук П.О. Зеленчуков А.А., Романов С.Ю., Синяк Ю.Е. Регенерация воды и атмосферы на космической станции: опыт орбитальных станций "Салют", "Мир" и МКС, перспективы развития // Сб. материалов междунар. науч. конф. IAC-10.A1.6.6., 27.10.2010 - Москва, 2010.
  2. Бобе Л.С., Самсонов Н.М., Новиков В.М., Кочетков А.А., Солоухин В.А. и др. Перспективы развития систем регенерации воды обитаемых космических станций // Известия Академии наук. Энергетика. - 2009. - №1 - С. 69-77.
  3. Среда обитания космонавта в пилотируемом космическом аппарате. Общие медико-технические требования: ГОСТ Р 50804-95. - Введ. 1995-08-08. - Москва: Госстандарт России, 1995. - 118 с.: ил.
  4. Бобе Л.С. Технологические процессы систем регенерации воды: учеб. пособие - М.: Изд-во МАИ, 1991. - 68 с.
  5. Риттенберг Б.Г., Филоненко В.Б., Барабаш П.А. О напоре безлопастных черпаковых насосов с частично заполненным корпусом // Насосы для интенсификации производственных процессов: Тем. сб. науч. тр. ВНИИГИДРОМАШ. М., 1988. - с. 132-137.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Salnikov N.A., Bobe L.S., Nikolaykina N.E., Rykhlov N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies