Kinematic analysis of cam-gear-lever mechanism with elastic element in connecting rod



Cite item

Full Text

Abstract

The paper describes the scheme and dependencies required for kinematic calculating of mechanism ensuring driven member dwell fixing its position during dwell. It is achieved through creation of a rod by two parts connected by preloaded resilient element and through insertion of additional idle wheels for linkage between wheels mounted on the moveable hinge axes.

Full Text

Среди многообразия механизмов, применяемых для воспроизведения периодического поворота, особое место занимают зубчато-рычажные механизмы, обеспечивающие периодический поворот выходного звена с выстоем без разрыва кинематической цепи. На рисунке 1 представлена схема такого механизма, предложенного Роттенбахером [1]. Он состоит из кривошипно-коромыслового шарнирного четырехзвенника с установленными на осях его шарниров B, C и D, последовательно зацепляющихся между собой зубчатыми колесами 1, 4 и 5. Колесо 1 жестко связано с кривошипом. Колесо 4 и 5 вращаются на осях свободно. При определенных соотношениях параметров четырехзвенника выходное звено механизма - колесо 5 при равномерном вращении кривошипа 1 совершает периодическое вращение с приближенным выстоем (рисунок 2). Однако с увеличением угла φ1аб приближенного выстоя, растет и угол обратного поворота δ . Рисунок 1. Зубчато-рычажный механизм Роттенбахера Рисунок 2. Функция положения механизма Известные способы уменьшения или устранения угла обратного поворота не обеспечивают точного выстоя. Предлагаемая схема механизма показана на рисунке 3. Он отличается тем, что шатун ВС его четырехзвенника выполнен из двух частей 2 и 2', соединенных между собой упругим элементом. Причем упругий элемент - спиральная пружина сжатия - установлен таким образом, что как укорочение, так и удлинение шатуна по сравнению с его исходной длиной требуют превышения силой, действующей вдоль линии шатуна, силы предварительного натяга пружины. Следовательно, показанное устройство обеспечивает предварительный натяг двухстороннего действия. Рисунок 3. Кулачково-зубчато-рычажный механизм с упругим элементом в шатуне При изменяющейся длине шатуна ВС связь между зубчатыми колесами, установленными на осях подвижных шарниров В и С, с сохранением направления их относительного вращения, которое они имели в механизме, изображенном на рисунке 1, осуществляется через промежуточные зубчатые колеса 8 и 9. Они установлены свободно на оси внутреннего шарнира Е и в точке F одного из звеньев дополнительной двухповодковой группы 6 - 7, присоединенной к механизму в шарнирах В и С. Фиксация зубчатого колеса 5 на угле выстоя осуществляется призмой рычага фиксатора 10, которым управляет кулачок, закрепленный на валу кривошипа. Механизм работает следующим образом. На угле поворота кривошипа φ1ва кулачок кривошипа 1, воздействуя на фиксатор 10, удерживает его в отведенном от колеса 5 состоянии. При этом сила в шатуне меньше силы предварительного натяга его упругого элемента и поэтому части шатуна 2 и 2’ вместе с присоединенной двухповодковой группой, т.е. с рычагами 6 и 7, движутся как одно звено. В начале угла выстоя φ1ав в момент, когда угловая скорость колеса 5 оказывается равной нулю, кулачок освобождает фиксатор, и последний фиксирует колесо 5. Принудительная остановка выходного звена приводит к превышению силой растяжения или сжатия шатуна силы предварительного натяга его упругого элемента. В результате этого начинается относительное движение частей 2 и 2' шатуна и рычагов 6 и 7, что и позволяет механизму продолжать движение при неподвижном колесе 5. В конце угла выстоя φ1ав в момент восстановления шатуном своей исходной длины кулачок отводит фиксатор и освобождает колесо 5 после чего начинается повторение цикла движения. Таким образом, предлагаемый механизм имеет переменную структуру. На угле поворота кривошипа φ1ва его структура аналогична структуре механизма Роттенбахера. Различие состоит в установке двух дополнительных паразитных колес на шатуне, не вносящих изменения в движение остальных звеньев. После остановки выходного звена и начала относительного движения частей шатуна 2 и 2' и рычагов 6 и 7 структура механизма изменяется (рисунок 4). Его рычажная часть, состоящая из звеньев 1, 2, 2', 3, 6, 7 имеет две степени свободы и определенность в их движении при заданном вращении кривошипа вносится зубчатыми колесами, одно из которых, колесо 4, зацепляется с установленным колесом 5. Как известно, кинематическое исследование механизмов с высшими парами упрощается, если произвести замену высших пар низшими. Попытка замены высших пар рассматриваемого механизма низшими приводит к механизму, который при начальном звене 1 состоит, кроме двухповодковой группы 2-2', из четырехповодковой группы Ассура, содержащей 10 звеньев и имеющей два замкнутых контура, пути кинематического анализа которой неизвестны. Поэтому в дальнейшем будем рассматривать механизм, содержащий как низшие, так и высшие пары. Рисунок 4. Структурная схема механизма в период выстоя выходного звена Для проектирования описанного механизма с точным выстоем, в частности, для выбора параметров упругого элемента необходимо знать относительное движение звеньев после остановки колеса 5. Решение этой задачи требует предварительного определения движения звеньев в момент начала выстоя выходного звена, т.е. в момент, соответствующий точке “а” на функции положения механизма (см. рисунок 2): (1) (2) (3) где: ℓ0, ℓ1 и ℓ3 - длины стойки, кривошипа и коромысла соответственно; ℓ2 - исходная длина шатуна. Известно [2, 3], что в трехколесном зубчато-рычажном механизме мгновенным остановкам выходного звена, имеющим место в положениях, отмеченных на функции положения точками а и с (см. рисунок 2), соответствует расположение полюсов зацепления обеих пар колес Р14 и Р45 (рисунок 5) на общей прямой, проходящей через центр вращения кривошипа. В этом случае колесо 5 оказывается неподвижным, т.к. полюс зацепления Р45 совпадает с мгновенным центром вращения колеса 4 в абсолютном движении: поскольку Р45 располагается на пересечении перпендикуляров к скоростям двух точек - Р14 и С, проведенных через эти точки. Для рассматриваемого механизма, в котором колеса 1 и 4 непосредственно между собой не зацепляются, такую же роль при отыскании положения мгновенных остановок выходного звена, как полюс зацепления этих колес в механизме на рисунке1, будет выполнять мгновенный центр их относительного вращения. Он располагается на прямой ВС и при вращении колес в противоположенных направлениях делит исходную длину шатуна внутренним образом на части, пропорциональные делительным радиусам соответствующих колес. Рисунок 5. Определение положений механизма, соответствующих мгновенным остановкам выходного звена Обозначая эту точку, как и полюс зацепления, через Р14 (рисунок 5) и учитывая, что нас интересует положение мгновенной остановки выходного звена в начале угла выстоя (точка “а” на рисунке 2), когда шатун имеет исходную длину ℓ2, расстояние от Р14 до точки В определяем как: где: r1 и r4 - делительные радиусы зубчатых колес 1 и 4. При расположении Р14 и Р45 на общей прямой, проходящей через центр А, должна соблюдаться пропорциональность проекций отрезков АР14 и АР45 на координатные оси, т.е.: (4) где: rw5 - начальный радиус колеса 5. Совместное решение уравнений 1, 2, 3 и 4 позволяет рассчитать значение углов φ1а, φ2а и φ3а, определяющих положения звеньев четырехзвенника в начальный момент выстоя, когда механизм изменяет свою структуру. Для определения связи между приращениями углов поворота звеньев механизма, отчитываемыми от начального момента остановки выходного звена, после которого работа механизма описывается схемой, представленной на рисунке 3, применим метод Виллиса, последовательно рассматривая приращение углов поворота колес относительно различных звеньев [4]. В результате получим: (5) Текущие значения длины шатуна ℓВС и углов φ2, φ6 и φ7, определяющих положения соответствующих звеньев относительно линии стойки, находим из уравнений: (6) , (7) ), (8) (9) Угол φ6а определяется подстановкой в формулу (8) угла φ2а и ℓВС = ℓ2, а введение полученного φ6а и ℓ2 в формулу (9) дает угол φ7а. Совместным решением уравнений (5) - (9) для ряда последовательных значений угла φ1, начинающихся с φ1= φ1а, находим максимальное приращение длины шатуна (ℓ2 - ℓВС)max, необходимое для расчета пружины, и значение угла φ1, при котором ℓВС = ℓ2, т.е. шатун восстанавливает исходную длину и колесо 5 должно быть расфиксировано.
×

About the authors

T. A. Balabina

Moscow State University of Mechanical Engineering (MAMI)

8(495) 223-05-23

A. N. Mamaev

Moscow State University of Mechanical Engineering (MAMI)

8(495) 223-05-23

References

  1. Virabov R.V., Kostrova (Balabina) T.A. Cam-Gear-Lever Mechanism with Periodical Fixed Dwell of the Outlet Link. Материалы VI Конгресса по ТММ в Индии, 1983.
  2. Вирабов Р.В., Балабина Т.А. Кулачково-зубчато-рычажный механизм с точным выстоем выходного звена. «Вестник машиностроения», 1983, № 12.
  3. Балабина Т.А. Специфика кинематического и силового расчетов кулачково-зубчато-рычажных механизмов с упругим элементом и фиксированным выстоем выходного звена. Журнал «Проблемы машиностроения и автоматизации», № 3 - 4, 1993, МЦНТИ (Международный центр научной и технической информации).
  4. Вирабов Р.В., Дмитриева Л.Н., Балабина Т.А. Влияние упругого элемента на движение ведомого звена кулачково-зубчато-рычажного механизма. «Вестник машиностроения», 1989, № 1.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2014 Balabina T.A., Mamaev A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies