ПРОВОСПАЛИТЕЛЬНЫЕ ЦИТОКИНЫ В ПАТОГЕНЕЗЕ, ДИАГНОСТИКЕ И ЛЕЧЕНИИ ДИАБЕТИЧЕСКОЙ НЕФРОПАТИИ


Цитировать

Полный текст

Аннотация

Представлены современные представления о роли цитокинов в развитии и прогрессировании диабетической нефропатии. Обосновываются перспективы фармакологического воздействия на воспалительные цитокины с точки зрения торможения прогрессирования поражения почек при сахарном диабете.

Об авторах

И А Бондарь

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

В В Климонтов

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

А И Симакова

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

ГОУ ВПО Новосибирский государственный медицинский университет Росздрава, Новосибирск

Список литературы

  1. Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 2005; 48 (8): 1439-1444.
  2. Бондарь И.А., Климонтов В.В. Иммуновоспалительные механизмы в формировании диабетической нефропатии. Проблемы эндокринологии 2007; (2): 34-40.
  3. Navarro-González J.F., Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 2008; 19 (3): 433-442.
  4. Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточные взаимодействия. М.: Медицина, 2003; 2-е изд.: 288 с.
  5. Chow F.Y., Nikolic-Paterson D.J., Ozols E. et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006; 69 (1): 73-80.
  6. Hartner A., Veelken R., Wittmann M. et al. Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney. BMC Nephrol. 2005; 6 (1): 6.
  7. Tone A., Shikata K., Sasaki M. et al. Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats. Diabetologia 2005; 8 (11): 2402-2411.
  8. Kelly D.J., Chanty A., Gow R.M. et al. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy. J. Am. Soc. Nephrol. 2005; 6 (6): 1654-1660.
  9. Furuta T., Saito T., Ootaka T. et al. Intraglomerular immune cell infiltration and complement 3 deposits in membranoproliferative glomerulonephritis type I: a serial-biopsy study of 25 cases. Am. J. Kidney Dis. 1993; 21 (5): 480-485.
  10. Wada T., Furuichi K., Sakai N. et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000; 58 (4): 1492-1499.
  11. Бондарь И.А., Климонтов В.В., Надеев А.П. Мочевая экскреция провоспалительных цитокинов и трансформирующего фактора роста β на ранних стадиях диабетической нефропатии. Терапевтический архив 2008; (1): 52-56.
  12. Nguyen D., Ping F., Mu W. et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 2006; 11 (3): 226-231.
  13. Dalla Vestra M., Mussap M., Gallina P. et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J. Am. Soc. Nephrol. 2005; 16 (1): 78-82.
  14. Leinonen E.S., Hiukka A., Hurt-Camejo E. et al. Low-grade inflammation, endothelial activation and carotid intima-media thickness in type 2 diabetes. J. Intern. Med. 2004; 256 (2): 119-127.
  15. Hansen T.K., Forsblom C., Saraheimo M. et al. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 2010; 53 (7): 1517-1524.
  16. Бондарь И.А., Климонтов В.В., Надеев А.П. Уровень в сыворотке и почечная экспрессия молекул межклеточной адгезии ICAM-1 у больных с диабетической нефропатией. Сахарный диабет 2007; (3): 18-23.
  17. Шестакова М.В., Кочемасова Т.В., Горелышева В.А. и др. Роль молекул адгезии (ICAM-1 и Е-селектина) в развитии диабетических микроангиопатий. Тераптевтический архив 2002; (6): 24-27.
  18. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes - the EURODIAB Prospective Complications Study. Diabetologia 2005; 48 (2): 370-378.
  19. Amann B., Tinzmann R., Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 2003; 26 (8): 2421-2425.
  20. Banba N., Nakamura T., Matsumura M. et al. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000; 58 (2): 684-690.
  21. Gruden G., Setti G., Hayward A. et al. Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J. Am. Soc. Nephrol. 2005; 16 (3): 688-696.
  22. Viedt C., Dechend R., Fei J. et al. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J. Am. Soc. Nephrol. 2002; 13 (6): 1534-1547.
  23. Lee F.T., Cao Z., Long D.M. et al. J. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. Am. Soc. Nephrol. 2004; 15 (8): 2139-2151.
  24. Ota T., Takamura T., Ando H. et al. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 2003; 46 (6): 843-851.
  25. Sassy-Prigent C., Heudes D., Mandet C. et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49 (3): 466-475.
  26. Min D <file:///G:\pubmed?term=%22Min%20D%22%5BAuthor%5D>., Lyons J. G., Bonner J <file:///G:\pubmed?term=%22Bonner%20J%22%5BAuthor%5D>. et al. Mesangial cell-derived factors alter monocyte activation and function through inflammatory pathways: possible pathogenic role in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. <javascript:AL_get(this,%20'jour',%20'Am%20J%20Physiol%20Renal%20Physiol.');> 2009; 297 (5): 1229-1237.
  27. Lynn E.G., Siow Y.L., O K. Very low-density lipoprotein stimulates the expression of monocyte chemoattractant protein-1 in mesangial cells. Kidney Int. 2000; 57 (4): 1472-1483.
  28. Ihm C.G., Park J.K., Hong S.P. et al. Circulating factors in sera or peripheral blood mononuclear cells in patients with membranous nephropathy or diabetic nephropathy. J. Korean. Med. Sci. 1997; 12 (6): 539-544.
  29. Tarabra E., Giunti S., Barutta F. et al. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 2009; 58 (9): 2109-2118.
  30. Lee E.Y., Chung C.H., Khoury C.C. et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal. Physiol. 2009; 297 (1): 85-94.
  31. Giunti S., Tesch G.H., Pinach S. et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia. <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2008; 51 (1): 198-207.
  32. Park J., Ryu D.R., Li J.J. et al. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am. J. Physiol. Renal. Physiol. 2008; 295 (3): F749-F757.
  33. Wang S.N., LaPage J., Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int. 2000; 57 (3): 1002-1014.
  34. Mezzano S., Droguett A., Burgos M.E. et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int. Suppl. 2003; 86: S64-S70.
  35. Qi W., Chen X., Zhang Y. et al. High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol. Dial. Transplant. 2007; 22 (11): 3147-3153.
  36. Navarro J.F., Milena F.J., Mora C <file:///G:\pubmed?term=%22Mora%20C%22%5BAuthor%5D>. et al. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am. J. Nephrol <javascript:AL_get(this,%20'jour',%20'Am%20J%20Nephrol.');>. 2006; 26 (6): 562-570.
  37. Pawluczyk I.Z., Harris K.P. Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int. 1998; 54 (1): 62-70.
  38. Vesey D.A., Cheung C.W., Cuttle L. et al. Interleukin-1beta induces human proximal tubule cell injury, alpha-smooth muscle actin expression and fibronectin production. Kidney Int. 2002; 62 (1): 31-40.
  39. Mensah-Brown E.P., Obineche E.N., Galadari S <file:///G:\pubmed?term=%22Galadari%20S%22%5BAuthor%5D>. et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine <javascript:AL_get(this,%20'jour',%20'Cytokine.');> 2005; 31 (3): 180-190.
  40. Kalantarinia K., Awad A.S., Siragy H.M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int <javascript:AL_get(this,%20'jour',%20'Kidney%20Int.');>. 2003; 64 (4): 1208-1213.
  41. Chiarelli F., Cipollone F., Mohn A. et al. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care. 2002; 25 (10); 1829-1834.
  42. Takebayashi K., Matsumoto S., Aso Y. et al. Association between circulating monocyte chemoattractant protein-1 and urinary albumin excretion in nonobese Type 2 diabetic patients. J. Diabetes Complications 2006; 20 (2): 98-104.
  43. Мухин Н.А., Козловская Л.В., Кутырина И.М. и др. Протеинурическое ремоделирование тубулоинтерстиция - мишень нефропротективной терапии при хронических заболеваниях почек. Тер. архив 2002; (6): 5-11.
  44. Tashiro K., Koyanagi I., Saitoh A. et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2002; 16 (1): 1-4.
  45. Wong C.K., Ho A.W., Tong P.C. et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 2007; 149 (1): 123-131.
  46. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. EURODIAB Prospective Complications Study Group <file:///G:\pubmed?term=%22EURODIAB%20Prospective%20Complications%20Study%20Group%22%5BCorporate%20Author%5D>. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes - the EURODIAB Prospective Complications Study. Diabetologia <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2005; 48 (2): 370-378.
  47. Moriwaki Y., Yamamoto T., Shibutani Y. et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism <javascript:AL_get(this,%20'jour',%20'Metabolism.');> 2003; 52 (5): 605-608.
  48. Sahakyan K., Klein B., Lee K. et al. Inflammatory and endothelial dysfunction markers and proteinuria in persons with type 1 diabetes mellitus. Eur. J. Endocrinol. 2010; 162 (6): 1101-1105.
  49. Ng D.P., Fukushima M., Tai B. C. et al. Reduced GFR and albuminuria in Chinese type 2 diabetes mellitus patients are both independently associated with activation of the TNF-alpha system. Diabetologia <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2008; 51 (12): 2318-2324.
  50. Niewczas M.A., Ficociello L.H., Johnson A.C. et al. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in non-proteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. <javascript:AL_get(this,%20'jour',%20'Clin%20J%20Am%20Soc%20Nephrol.');> 2009; 4 (1): 62-70.
  51. Vendrell J <file:///G:\pubmed?term=%22Vendrell%20J%22%5BAuthor%5D>., Broch M., Fernandez-Real J. M. et al. Tumour necrosis factor receptors (TNFRs) in Type 2 diabetes. Analysis of soluble plasma fractions and genetic variations of TNFR2 gene in a case-control study. Diabet. Med. <javascript:AL_get(this,%20'jour',%20'Diabet%20Med.');> 2005; 22 (4): 387-392.
  52. Lin J., Hu F.B., Mantzoros C., Curhan G.C. Lipid and inflammatory biomarkers and kidney function decline in type 2 diabetes. Diabetologia 2010; 53 (2): 263-267.
  53. Wolkow P.P., Niewczas M.A., Perkins B. et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J. Am. Soc. Nephrol. 2008; 19 (4): 789-797.
  54. Moon J.Y., Jeong L., Lee S. et al. Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J. Korean. Med. Sci. 2007; 22 (5): 810-814.
  55. Nakajima K., Tanaka Y., Nomiyama T. et al. RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects. Diabetes Care 2003; 26 (3): 892-898.
  56. Prasad P., Tiwari A.K., Kumar K.M. et al. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med. Genet. 2007; 8: 20.
  57. Mokubo A., Tanaka Y., Nakajima K. et al. Chemotactic cytokine receptor 5 (CCR5) gene promoter polymorphism (59029A/G) is associated with diabetic nephropathy in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetes Res. Clin. Pract. 2006; 73 (1): 89-94.
  58. Ahluwalia T.S., Khullar M., Ahuja M. et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One. 2009; 4 (4): e5168.
  59. Kitamura A., Hasegawa G., Obayashi H. et al. Interleukin-6 polymorphism (-634C/G) in the promotor region and the progression of diabetic nephropathy in type 2 diabetes. Diabet. Med. 2002; 19 (12): 1000-1005.
  60. Kang Y.S., Lee M.H., Song H.K. et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. <javascript:AL_get(this,%20'jour',%20'Kidney%20Int.');> 2010; 78 (9): 883-894.
  61. Ninichuk V., Khandoga A.G., Segerer S. et al. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol. <javascript:AL_get(this, 'jour', 'Am J Pathol.');> 2007; 170 (4): 1267-1276.
  62. Shi Y., Du C., Zhang Y. et al. Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am. J. Nephrol. 2010; 31 (5): 380-388.
  63. Ye S.D., Zheng M., Zhao L.L. et al. Intensive insulin therapy decreases urinary MCP-1 and ICAM-1 excretions in incipient diabetic nephropathy. Eur. J. Clin. Invest. 2009; 39 (11): 980-985.
  64. Zheng M., Ye S., Zhai Z. et al. Rosiglitazone protects diabetic rats against kidney disease through the suppression of renal moncyte chemoattractant protein-1 expression. J. Diabetes Complications. 2009; 23 (2): 124-129.
  65. Siragy H. M., Awad A., Abadir P. et al. The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-alpha in diabetic rats. Endocrinology <javascript:AL_get(this,%20'jour',%20'Endocrinology.');> 2003; 144 (6): 2229-2233.
  66. Ogawa S., Kobori H., Ohashi N <http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ohashi%20N%22%5BAuthor%5D>. et al. Angiotensin II Type 1 Receptor Blockers Reduce Urinary Angiotensinogen Excretion and the Levels of Urinary Markers of Oxidative Stress and Inflammation in Patients with Type 2 Diabetic Nephropathy. Biomark Insights. 2009 ; 4: 97-102.
  67. Takebayashi K., Suetsugu M., Matsumoto S. et al. Effects of rosuvastatin and colestimide on metabolic parameters and urinary monocyte chemoattractant protein-1 in type 2 diabetic patients with hyperlipidemia. South Med. J. <javascript:AL_get(this,%20'jour',%20'South%20Med%20J.');> 2009; 102 (4): 361-368.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML