INFLAMMATORY CYTOKINES IN PATHOGENESIS, DIAGNOSIS AND TREATMENT OF DIABETIC NEPHROPATHY


Дәйексөз келтіру

Толық мәтін

Аннотация

Role of cytokines in diabetic nephropathy in development and progression of diabetic nephropathy is discussed. Perspectives of pharmacological influence on inflammatory cytokines in retardation of progression of diabetic nephropathy are shown

Негізгі сөздер

Авторлар туралы

I Bondar'

V Klimontov

A Simakova

Әдебиет тізімі

  1. Rossing P. The changing epidemiology of diabetic microangiopathy in type 1 diabetes. Diabetologia 2005; 48 (8): 1439-1444.
  2. Бондарь И.А., Климонтов В.В. Иммуновоспалительные механизмы в формировании диабетической нефропатии. Проблемы эндокринологии 2007; (2): 34-40.
  3. Navarro-González J.F., Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J. Am. Soc. Nephrol. 2008; 19 (3): 433-442.
  4. Пальцев М.А., Иванов А.А., Северин С.Е. Межклеточные взаимодействия. М.: Медицина, 2003; 2-е изд.: 288 с.
  5. Chow F.Y., Nikolic-Paterson D.J., Ozols E. et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int. 2006; 69 (1): 73-80.
  6. Hartner A., Veelken R., Wittmann M. et al. Effects of diabetes and hypertension on macrophage infiltration and matrix expansion in the rat kidney. BMC Nephrol. 2005; 6 (1): 6.
  7. Tone A., Shikata K., Sasaki M. et al. Erythromycin ameliorates renal injury via anti-inflammatory effects in experimental diabetic rats. Diabetologia 2005; 8 (11): 2402-2411.
  8. Kelly D.J., Chanty A., Gow R.M. et al. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy. J. Am. Soc. Nephrol. 2005; 6 (6): 1654-1660.
  9. Furuta T., Saito T., Ootaka T. et al. Intraglomerular immune cell infiltration and complement 3 deposits in membranoproliferative glomerulonephritis type I: a serial-biopsy study of 25 cases. Am. J. Kidney Dis. 1993; 21 (5): 480-485.
  10. Wada T., Furuichi K., Sakai N. et al. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000; 58 (4): 1492-1499.
  11. Бондарь И.А., Климонтов В.В., Надеев А.П. Мочевая экскреция провоспалительных цитокинов и трансформирующего фактора роста β на ранних стадиях диабетической нефропатии. Терапевтический архив 2008; (1): 52-56.
  12. Nguyen D., Ping F., Mu W. et al. Macrophage accumulation in human progressive diabetic nephropathy. Nephrology (Carlton) 2006; 11 (3): 226-231.
  13. Dalla Vestra M., Mussap M., Gallina P. et al. Acute-phase markers of inflammation and glomerular structure in patients with type 2 diabetes. J. Am. Soc. Nephrol. 2005; 16 (1): 78-82.
  14. Leinonen E.S., Hiukka A., Hurt-Camejo E. et al. Low-grade inflammation, endothelial activation and carotid intima-media thickness in type 2 diabetes. J. Intern. Med. 2004; 256 (2): 119-127.
  15. Hansen T.K., Forsblom C., Saraheimo M. et al. Association between mannose-binding lectin, high-sensitivity C-reactive protein and the progression of diabetic nephropathy in type 1 diabetes. Diabetologia 2010; 53 (7): 1517-1524.
  16. Бондарь И.А., Климонтов В.В., Надеев А.П. Уровень в сыворотке и почечная экспрессия молекул межклеточной адгезии ICAM-1 у больных с диабетической нефропатией. Сахарный диабет 2007; (3): 18-23.
  17. Шестакова М.В., Кочемасова Т.В., Горелышева В.А. и др. Роль молекул адгезии (ICAM-1 и Е-селектина) в развитии диабетических микроангиопатий. Тераптевтический архив 2002; (6): 24-27.
  18. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes - the EURODIAB Prospective Complications Study. Diabetologia 2005; 48 (2): 370-378.
  19. Amann B., Tinzmann R., Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 2003; 26 (8): 2421-2425.
  20. Banba N., Nakamura T., Matsumura M. et al. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000; 58 (2): 684-690.
  21. Gruden G., Setti G., Hayward A. et al. Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J. Am. Soc. Nephrol. 2005; 16 (3): 688-696.
  22. Viedt C., Dechend R., Fei J. et al. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J. Am. Soc. Nephrol. 2002; 13 (6): 1534-1547.
  23. Lee F.T., Cao Z., Long D.M. et al. J. Interactions between angiotensin II and NF-kappaB-dependent pathways in modulating macrophage infiltration in experimental diabetic nephropathy. Am. Soc. Nephrol. 2004; 15 (8): 2139-2151.
  24. Ota T., Takamura T., Ando H. et al. Preventive effect of cerivastatin on diabetic nephropathy through suppression of glomerular macrophage recruitment in a rat model. Diabetologia 2003; 46 (6): 843-851.
  25. Sassy-Prigent C., Heudes D., Mandet C. et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes 2000; 49 (3): 466-475.
  26. Min D <file:///G:pubmed?term=%22Min%20D%22%5BAuthor%5D>., Lyons J. G., Bonner J <file:///G:pubmed?term=%22Bonner%20J%22%5BAuthor%5D>. et al. Mesangial cell-derived factors alter monocyte activation and function through inflammatory pathways: possible pathogenic role in diabetic nephropathy. Am. J. Physiol. Renal. Physiol. <javascript:AL_get(this,%20'jour',%20'Am%20J%20Physiol%20Renal%20Physiol.');> 2009; 297 (5): 1229-1237.
  27. Lynn E.G., Siow Y.L., O K. Very low-density lipoprotein stimulates the expression of monocyte chemoattractant protein-1 in mesangial cells. Kidney Int. 2000; 57 (4): 1472-1483.
  28. Ihm C.G., Park J.K., Hong S.P. et al. Circulating factors in sera or peripheral blood mononuclear cells in patients with membranous nephropathy or diabetic nephropathy. J. Korean. Med. Sci. 1997; 12 (6): 539-544.
  29. Tarabra E., Giunti S., Barutta F. et al. Effect of the monocyte chemoattractant protein-1/CC chemokine receptor 2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes 2009; 58 (9): 2109-2118.
  30. Lee E.Y., Chung C.H., Khoury C.C. et al. The monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-beta, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal. Physiol. 2009; 297 (1): 85-94.
  31. Giunti S., Tesch G.H., Pinach S. et al. Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells. Diabetologia. <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2008; 51 (1): 198-207.
  32. Park J., Ryu D.R., Li J.J. et al. MCP-1/CCR2 system is involved in high glucose-induced fibronectin and type IV collagen expression in cultured mesangial cells. Am. J. Physiol. Renal. Physiol. 2008; 295 (3): F749-F757.
  33. Wang S.N., LaPage J., Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int. 2000; 57 (3): 1002-1014.
  34. Mezzano S., Droguett A., Burgos M.E. et al. Renin-angiotensin system activation and interstitial inflammation in human diabetic nephropathy. Kidney Int. Suppl. 2003; 86: S64-S70.
  35. Qi W., Chen X., Zhang Y. et al. High glucose induces macrophage inflammatory protein-3 alpha in renal proximal tubule cells via a transforming growth factor-beta 1 dependent mechanism. Nephrol. Dial. Transplant. 2007; 22 (11): 3147-3153.
  36. Navarro J.F., Milena F.J., Mora C <file:///G:pubmed?term=%22Mora%20C%22%5BAuthor%5D>. et al. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am. J. Nephrol <javascript:AL_get(this,%20'jour',%20'Am%20J%20Nephrol.');>. 2006; 26 (6): 562-570.
  37. Pawluczyk I.Z., Harris K.P. Cytokine interactions promote synergistic fibronectin accumulation by mesangial cells. Kidney Int. 1998; 54 (1): 62-70.
  38. Vesey D.A., Cheung C.W., Cuttle L. et al. Interleukin-1beta induces human proximal tubule cell injury, alpha-smooth muscle actin expression and fibronectin production. Kidney Int. 2002; 62 (1): 31-40.
  39. Mensah-Brown E.P., Obineche E.N., Galadari S <file:///G:pubmed?term=%22Galadari%20S%22%5BAuthor%5D>. et al. Streptozotocin-induced diabetic nephropathy in rats: the role of inflammatory cytokines. Cytokine <javascript:AL_get(this,%20'jour',%20'Cytokine.');> 2005; 31 (3): 180-190.
  40. Kalantarinia K., Awad A.S., Siragy H.M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int <javascript:AL_get(this,%20'jour',%20'Kidney%20Int.');>. 2003; 64 (4): 1208-1213.
  41. Chiarelli F., Cipollone F., Mohn A. et al. Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care. 2002; 25 (10); 1829-1834.
  42. Takebayashi K., Matsumoto S., Aso Y. et al. Association between circulating monocyte chemoattractant protein-1 and urinary albumin excretion in nonobese Type 2 diabetic patients. J. Diabetes Complications 2006; 20 (2): 98-104.
  43. Мухин Н.А., Козловская Л.В., Кутырина И.М. и др. Протеинурическое ремоделирование тубулоинтерстиция - мишень нефропротективной терапии при хронических заболеваниях почек. Тер. архив 2002; (6): 5-11.
  44. Tashiro K., Koyanagi I., Saitoh A. et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 2002; 16 (1): 1-4.
  45. Wong C.K., Ho A.W., Tong P.C. et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin. Exp. Immunol. 2007; 149 (1): 123-131.
  46. Schram M.T., Chaturvedi N., Schalkwijk C.G. et al. EURODIAB Prospective Complications Study Group <file:///G:pubmed?term=%22EURODIAB%20Prospective%20Complications%20Study%20Group%22%5BCorporate%20Author%5D>. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes - the EURODIAB Prospective Complications Study. Diabetologia <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2005; 48 (2): 370-378.
  47. Moriwaki Y., Yamamoto T., Shibutani Y. et al. Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism <javascript:AL_get(this,%20'jour',%20'Metabolism.');> 2003; 52 (5): 605-608.
  48. Sahakyan K., Klein B., Lee K. et al. Inflammatory and endothelial dysfunction markers and proteinuria in persons with type 1 diabetes mellitus. Eur. J. Endocrinol. 2010; 162 (6): 1101-1105.
  49. Ng D.P., Fukushima M., Tai B. C. et al. Reduced GFR and albuminuria in Chinese type 2 diabetes mellitus patients are both independently associated with activation of the TNF-alpha system. Diabetologia <javascript:AL_get(this,%20'jour',%20'Diabetologia.');> 2008; 51 (12): 2318-2324.
  50. Niewczas M.A., Ficociello L.H., Johnson A.C. et al. Serum concentrations of markers of TNFalpha and Fas-mediated pathways and renal function in non-proteinuric patients with type 1 diabetes. Clin. J. Am. Soc. Nephrol. <javascript:AL_get(this,%20'jour',%20'Clin%20J%20Am%20Soc%20Nephrol.');> 2009; 4 (1): 62-70.
  51. Vendrell J <file:///G:pubmed?term=%22Vendrell%20J%22%5BAuthor%5D>., Broch M., Fernandez-Real J. M. et al. Tumour necrosis factor receptors (TNFRs) in Type 2 diabetes. Analysis of soluble plasma fractions and genetic variations of TNFR2 gene in a case-control study. Diabet. Med. <javascript:AL_get(this,%20'jour',%20'Diabet%20Med.');> 2005; 22 (4): 387-392.
  52. Lin J., Hu F.B., Mantzoros C., Curhan G.C. Lipid and inflammatory biomarkers and kidney function decline in type 2 diabetes. Diabetologia 2010; 53 (2): 263-267.
  53. Wolkow P.P., Niewczas M.A., Perkins B. et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J. Am. Soc. Nephrol. 2008; 19 (4): 789-797.
  54. Moon J.Y., Jeong L., Lee S. et al. Association of polymorphisms in monocyte chemoattractant protein-1 promoter with diabetic kidney failure in Korean patients with type 2 diabetes mellitus. J. Korean. Med. Sci. 2007; 22 (5): 810-814.
  55. Nakajima K., Tanaka Y., Nomiyama T. et al. RANTES promoter genotype is associated with diabetic nephropathy in type 2 diabetic subjects. Diabetes Care 2003; 26 (3): 892-898.
  56. Prasad P., Tiwari A.K., Kumar K.M. et al. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med. Genet. 2007; 8: 20.
  57. Mokubo A., Tanaka Y., Nakajima K. et al. Chemotactic cytokine receptor 5 (CCR5) gene promoter polymorphism (59029A/G) is associated with diabetic nephropathy in Japanese patients with type 2 diabetes: a 10-year longitudinal study. Diabetes Res. Clin. Pract. 2006; 73 (1): 89-94.
  58. Ahluwalia T.S., Khullar M., Ahuja M. et al. Common variants of inflammatory cytokine genes are associated with risk of nephropathy in type 2 diabetes among Asian Indians. PLoS One. 2009; 4 (4): e5168.
  59. Kitamura A., Hasegawa G., Obayashi H. et al. Interleukin-6 polymorphism (-634C/G) in the promotor region and the progression of diabetic nephropathy in type 2 diabetes. Diabet. Med. 2002; 19 (12): 1000-1005.
  60. Kang Y.S., Lee M.H., Song H.K. et al. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. <javascript:AL_get(this,%20'jour',%20'Kidney%20Int.');> 2010; 78 (9): 883-894.
  61. Ninichuk V., Khandoga A.G., Segerer S. et al. The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol. <javascript:AL_get(this, 'jour', 'Am J Pathol.');> 2007; 170 (4): 1267-1276.
  62. Shi Y., Du C., Zhang Y. et al. Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am. J. Nephrol. 2010; 31 (5): 380-388.
  63. Ye S.D., Zheng M., Zhao L.L. et al. Intensive insulin therapy decreases urinary MCP-1 and ICAM-1 excretions in incipient diabetic nephropathy. Eur. J. Clin. Invest. 2009; 39 (11): 980-985.
  64. Zheng M., Ye S., Zhai Z. et al. Rosiglitazone protects diabetic rats against kidney disease through the suppression of renal moncyte chemoattractant protein-1 expression. J. Diabetes Complications. 2009; 23 (2): 124-129.
  65. Siragy H. M., Awad A., Abadir P. et al. The angiotensin II type 1 receptor mediates renal interstitial content of tumor necrosis factor-alpha in diabetic rats. Endocrinology <javascript:AL_get(this,%20'jour',%20'Endocrinology.');> 2003; 144 (6): 2229-2233.
  66. Ogawa S., Kobori H., Ohashi N <http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ohashi%20N%22%5BAuthor%5D>. et al. Angiotensin II Type 1 Receptor Blockers Reduce Urinary Angiotensinogen Excretion and the Levels of Urinary Markers of Oxidative Stress and Inflammation in Patients with Type 2 Diabetic Nephropathy. Biomark Insights. 2009 ; 4: 97-102.
  67. Takebayashi K., Suetsugu M., Matsumoto S. et al. Effects of rosuvastatin and colestimide on metabolic parameters and urinary monocyte chemoattractant protein-1 in type 2 diabetic patients with hyperlipidemia. South Med. J. <javascript:AL_get(this,%20'jour',%20'South%20Med%20J.');> 2009; 102 (4): 361-368.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>