Third-year trajectories of reduction in estimated gfr before start of dialysis according to the data of the city register of patients with CKD

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Several studies describe the trajectories of reduction in glomerular filtration rate (GFR) before starting dialysis. The trajectories of reduction in GFR may affect the conditions for starting dialysis and long-term prognosis. Material and methods. Among 1029 unselected patients who started dialysis in St. Petersburg in 2012-2014, 481 (46.7%) were observed for a long time in the City nephrology Center, and included in the City Register of patients with CKD. The mean age was 63±12 years, 47.4% women, 21.8% diabetic patients. The median of the number of visits with an assessment of the estimated (e)GFR was 7 (interquartile range - IR 5÷9); the duration of follow-up for 352 (73.1%) patients exceeded 36 months, for the remaining 129 (26.9%) patients was 21 (14÷28) month. Results. The initial eGFR was 43±22 ml/min/1.73 m2; median proteinuria - 1.4 g/day (0.5÷3.1). The mean rate of decrease in eGFR in the whole group was -3.94 ml/min/1.73 m2 per year (95% confidence interval [Сі] -6.48÷-1.87). We identified three types of trajectory of the decrease in eGFR: slow progression (-2.58, 95% CI - -4.95÷-0.67 ml/min/1.73 m2 per year) from cKD-3B-cKD-4 - 73% of patients, fast progression (-7.81, 95% CI - -10.32÷-5.71) from CKD-З -22% of patients, accelerated progression - initial absence of progression ( + 0.31, 95% CI - -1.61÷-2.16), followed by an acceleration in the reduction of eGFR (-21.3, 95% CI --32.4÷11.7) from CKD-3-5% of patients. Dialysis was started at eGFR 7±3 ml/min/1.73 m2 in the "slow" group (32% started dialysis urgently), 6±4 - in "fast" group (52% - urgently), and 5±4 ml/min/1.73 m2 - in the group of "accelerated" progression (58% - urgently). In addition to differences in eGFR at the start of dialysis, patients differed in the anemia, hyperphosphataemia and blood pressure levels; differences between groups in the structure of diagnoses did not reach statistical significance. Conclusion. CKD progression before dialysis happens in different ways, which can affect the conditions for starting dialysis and planning the management of a patient with CKD.

Full Text

Restricted Access

References

  1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 2002; 39(2 Suppl 1): 1-266.
  2. Ramspek C.L., Nacak H., van Diepen M., de Goeij M.C., Rotmans J.I., Dekker F.W. Pre-dialysis decline of measured glomerular filtration rate but not serum creatinine-based estimated glomerular filtration rate is a risk factor for mortality on dialysis. Nephrol. Dial. Transplant. 2017; 32(1): 89-96. doi: 10.1093/ndt/gfw236.
  3. Denic A., Glassock R.J., Rule A.D. Structural and functional changes with the ageing kidney. Adv. Chronic Kidney Dis. 2016; 23(1): 19-28.
  4. Delanaye P., Glassock R.J., Pottel H., Rule A.D. An Age-Calibrated Definition of Chronic Kidney Disease: Rationale and Benefits. Clin. Biochem. Rev. 2016; 37(1): 17-26.
  5. Земченков А.Ю., Конакова И.Н. Темпы прогрессирования хронической болезни почек по данным Санкт-петербургского городского регистра ХБП. Нефрология и диализ 2015; 17(1): 34-51.
  6. Levey A.S.,Stevens L.A, Schmid C.H, Zhang Y.L, Castro A.F.3rd, Feldman H.I., Kusek J.W., Eggers P., Van Lente F., Greene T., Coresh J.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009; 150(9): 604-612.
  7. Lonnemann G., Duttlinger J., Hohmann D. Timely Referral to Outpatient Nephrology Care Slows Progression and Reduces Treatment Costs of Chronic Kidney Diseases. KI Reports 2017; 2(2): 142-151. Doi: dx.doi.org/10.1016/j.ekir.2016.09.062.
  8. Al-Aly Z., Balasubramanian S., McDonald J.R. Scherrer J.F., O’Hare A.M. Greater variability in kidney function is associated with an increased risk of death. Kidney Int. 2012; 82(11): 1208-2014.
  9. Massol J., Janin G., Bachot C., Gousset C., Deville G.S., Chalopin J.M. Pilot non dialysis chronic renal insufficiency study (P-ND-CRIS): a pilot study of an open prospective hospital-based French cohort. BMC Nephrol. 2017; 18(1): 46. doi: 10.1186/s12882-017-0463-3.
  10. Tseng C.L., Lafrance J.P., Lu S.E., Soroka O., Miller D.R., Maney M., Pogach L.M. Variability in estimated glomerular filtration rate values is a risk factor in chronic kidney disease progression among patients with diabetes. BMC Nephrol. 2015; 16: 34. doi: 10.1186/s12882-015-0025-5.
  11. Perkins R.M., Tang X., Bengier A.C., Kirchner H.L., Bucaloiu I.D. Variability in estimated glomerular filtration rate is an independent risk factor for death among patients with stage 3 chronic kidney disease. Kidney Int. 2012; 82(12): 1332-1338. doi: 10.1038/ki.2012.281.
  12. Skupien J., Warram J.H., Smiles A.M. Stanton R.C., Krolewski A.S. Patterns of Estimated Glomerular Filtration Rate Decline Leading to End-Stage Renal Disease in Type 1 Diabetes. Diabetes Care 2016; 39(12): 2262-2269.
  13. Tsai W.C., Wu H.Y., Peng Y.S., Ko M.J., Wu M.S., Hung K.Y., Wu K.D., Chu T.S., Chien K.L. Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory MetaAnalysis. Medicine (Baltimore) 2016; 95(11): e3013. doi: 10.1097/MD.0000000000003013.
  14. Ross J.C., Castaldi P.J., Cho M.H., Chen J., Chang Y., Dy J.G., Silverman E.K., Washko G.R., Jose Estepar R.S. A Bayesian Nonparametric Model for Disease Subtyping: Application to Emphysema Phenotypes. IEEE Trans. Med. Imaging 2017; 36(1): 343-354. doi: 10.1109/TMI.2016.2608782.
  15. Hao G., Wang X., Treiber F.A., Harshfield G., Kapuku G., Su S. Blood Pressure Trajectories From Childhood to Young Adulthood Associated With Cardiovascular Risk: Results From the 23-Year Longitudinal Georgia Stress and Heart Study. Hypertension 2017; 69(3): 435-442. doi: 10.1161/HYPERTENSIONAHA.116.08312.
  16. O’Hare A.M., Batten A., Burrows N.R., Pavkov M.E., Taylor L., Gupta I., Todd-Stenberg J., Maynard C., Rodriguez R.A., Murtagh F.E., Larson E.B., Williams D.E. Trajectories of kidney function decline in the 2 years before initiation of long-term dialysis. Am. J. Kidney Dis. 2012; 59(4): 513-22. doi: 10.1053/j.ajkd.2011.11.044.
  17. Jones B.N., Nagin D.S., Roeder K. SAS Procedure based on mixture models for estimating developmental trajectories. Sociol Methods Res 2001; 29(3): 374-393.
  18. Xie Y., Bowe B., Xian H., Balasubramanian S., Al-Aly Z. Estimated GFR Trajectories of People Entering CKD Stage 4 and Subsequent Kidney Disease Outcomes and Mortality. Am. J. Kidney Dis. 2016; 68(2): 219-28. doi: 10.1053/j.ajkd.2016.02.039.
  19. Onuigbo M.A., Agbasi N. Diabetic Nephropathy and CKD-Analysis of Individual Patient Serum Creatinine Trajectories: A Forgotten Diagnostic Methodology for Diabetic CKD Prognostication and Prediction. J. Clin. Med. 2015; 4(7): 1348-1368. doi: 10.3390/jcm4071348.
  20. Li L., Astor B.C., Lewis J., Hu B., Appel L.J., Lipkowitz M.S., Toto R.D., Wang X., Wright J.T. Jr, Greene T.H. Longitudinal progression trajectory of GFR among patients with CKD. Am. J. Kidney Dis. 2012; 59(4): 504-12. doi: 10.1053/j.ajkd.2011.12.009.
  21. Hu B., Gadegbeku C., Lipkowitz M.S., Rostand S., Lewis J., Wright J.T., Appel L.J., Greene T., Gassman J., Astor B.C. Kidney function can improve in patients with hypertensive CKD. J. Am. Soc. Nephrol. 2012; 23(4): 706- 713. doi: 10.1681/ASN.2011050456.
  22. Turin T.C., Hemmelgarn B.R. Improvement in kidney function: a real occurrence. J Am Soc Nephrol 2012; 23(4): 575-7. Doi: 10.1681/ ASN.2012020144.
  23. Xie Y., Bowe B., Xian H., Balasubramanian S., Al-Aly Z. Renal Function Trajectories in Patients with Prior Improved eGFR Slopes and Risk of Death. PLoS One 2016; 11(2): e0149283. doi: 10.1371/journal.pone.0149283. eCollection 2016.
  24. Sharma A., Mucino M.J., Ronco C. Renal functional reserve and renal recovery after acute kidney injury. Nephrol. Clin. Pract. 2014; 127(1-4): 94- 100. doi: 10.1159/000363721.
  25. Kovesdy C.P., Coresh J., Ballew S.H., Woodward M., Levin A., Naimark D.M., Nally J., Rothenbacher D., Stengel B., Iseki K., Matsushita K., Levey A.S. Past Decline Versus Current eGFR and Subsequent ESRD Risk. J. Am. Soc. Nephrol 2016; 27(8): 2447-55. doi: 10.1681/ASN.2015060687.
  26. Naimark D.M., Grams M.E., Matsushita K., Black C., Drion I., Fox C.S., Inker L.A., Ishani A., Jee S.H., Kitamura A., Lea J.P., Nally J., Peralta C.A., Rothenbacher D., Ryu S., Tonelli M., Yatsuya H., Coresh J., Gansevoort R.T., Warnock D.G., Woodward M., de Jong P.E. Past Decline Versus Current eGFR and Subsequent Mortality Risk. J. Am. Soc. Nephrol. 2016; 27(8): 2456- 2466. doi: 10.1681/ASN.2015060688.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies