Drug-induced hypersensitivity: molecular mechanisms and modern approaches to diagnosis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Clinical manifestations of drug-induced hypersensitivity (DIH) can range from mild skin reactions (for example, maculopapular exanthema and urticaria) to severe systemic reactions, such as anaphylaxis due to drug-induced eosinophilia with systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS), or Stevens-Johnson syndrome (SJS/toxic epidermal necrolysis (Ten - toxic epidermal necrolysis). In modern pharmacogenomic studies, important steps have been taken to prevent some forms of DIH by identifying relevant genetic variants, especially those that encode drug-metabolizing enzymes and human leukocyte antigens (HLA). In addition, advances in the field of immunological genetics have allowed to put forward new concepts of mechanisms for the development of DIH. As a result, models of drug presentation, explaining how small drug antigens can interact with HLA (human leucocyte antigens) and T-cell receptor (TCR) molecules in DIH, have been greatly enhanced and include today the concept of "pharmacological interaction", the model a modified peptide repertoire and a model of a modified TCR repertoire, in addition to hapten theory. a wide range of clinical manifestations of DIH and the participation of various drugs in its development, as well as the diversity of pathogenetic mechanisms make the diagnosis and management of DIH extremely difficult. This review highlights recent advances in studying the molecular mechanisms of DIH development and briefly discusses current approaches to its diagnosis.

Full Text

Restricted Access

About the authors

K. A Aitbaev

Research Institute of Molecular Biology and Medicine

Doctor of Medical Sciences, Professor, Head of the Laboratory of Pathological Physiology Bishkek, Kyrgyzstan

I. T Murkamilov

I.K. Akhunbaev Kyrgyz State Medical Academy; Kyrgyz-Russian Slavic University n.a. the First President of Russia B.N. Yeltsin

Email: murkamilov.i@mail.ru
Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Vice-Rector for Clinical Work and Postgraduate Professional Education, Director of the V.N. Vinogradov Faculty Therapy Clinic, Head of the Faculty Therapy Department № 1 Bishkek, Kyrgyzstan

V. V Fomin

Sechenov First Moscow State Medical University

Doctor of Medical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences, Vice-Rector for Clinical Work and Postgraduate Professional Education, Director of the V.N. Vinogradov Faculty Therapy Clinic, Head of the Faculty Therapy Department № 1 Bishkek, Kyrgyzstan

A. D Alymkulova

Research Institute of Molecular Biology and Medicine

Researcher, Laboratory of Pathological Physiology Bishkek, Kyrgyzstan

M. T Talaibekov

Research Institute of Molecular Biology and Medicine

Post-graduate Student at the Department of Otorhinolaryngology

Zh. A Murkamilova

Family Medicine Center № 7

Therapist Bishkek, Kyrgyzstan

References

  1. Pickier W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003; 139(8) :683-693. doi: 10.7326/0003-4819-139-8-200310210 00012
  2. Montanez M.I., Mayorga C., Bogas G., et al. Epidemiology, mechanisms, and diagnosis of drug-induced anaphylaxis. Front. Immunol. 2017;8:614. doi: 10.3389/fimmu.2017.00614.
  3. Schnyder B., Pichler W.J. Mechanisms of drug-induced allergy. Mayo Clinic Proceedings. 2009;84(3):268-272. doi: 10.1016/S0025-6196(11)61145-2.
  4. Johansson S.G., Bieber T., Dahl R., et al. Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, 2003. J. Allerg. Clin. Immunol. 2004;113 (5):832-836. doi: 10.1016/j.jaci.2003.12.591.
  5. Mockenhaupt M. Epidemiology of cutaneous adverse drug reactions. Chem. Immunol. Allerg. 2012;97:1-17. doi: 10.1159/000335612.
  6. Wong G.A., Shear N.H. Adverse drug interactions and reactions in dermatology: current issues of clinical relevance. Dermatol. Clin. 2005;23(2):335-42. doi: 10.1155/2018/6431694.
  7. Bastuji-Garin S., Rzany B., Stern R.S., et al. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch. Dermatol. 1993;129(1):92-96.
  8. Sidoroff A., Dunant A., Viboud C., et al. Risk factors for acute generalized exanthematous pustulosis (AGEP)-results of a multinational case-control study (EuroSCAR). Br. J. Dermatol 2007;157(5):989-996. Doi:10.1111/ i.1365-2133.2007.081 56.
  9. Lerch M., Pichler W.J. The immunological and clinical spectrum of delayed drug-induced exanthems. Curr. Opin. Allerg. Clin. Immunol. 2004;4(5): 411-419.
  10. Padovan E., Bauer T., Tongio M.M., et al. Penicilloylpeptides are recognized as T. cell antigenic determinants in penicillin allergy. Eur. J. Immunol. 1997;27(6):1303-7. doi: 10.1002/eji.1830270602.
  11. Wei C.Y., Chung W.H., Huang H.W., et al. Direct interaction between HLA-B and carbamazepine activates T. cells in patients with Stevens-Johnson syndrome. J. Allerg. Clin. Immunol. 2012;12 (6):1562-1569. Doi:10.1016/j. jaci.2011.12.990.
  12. Yun J., Marcaida M.J., Eriksson K.K., et al. Oxypurinol directly and immediately activates the drug-specific T. cells via the preferential use of HLA-B 58:01. J. Immunol. 2014;192(7):2984-2993. doi: 10.4049/jimmunol.1302306.
  13. Illing P.T., Vivian J.P., Dudek N.L., et al. Immune selfreactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486(7404):554-558. doi: 10.1038/nature11147.
  14. Ostrov D.A., Grant B.J., Pompeu Y.A., et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(25):9959-9964. doi: 10.1073/pnas.1207934109.
  15. Тюльганова Д.А., Насаев Ш.Ш., Титерина Е.Л. и др. Новая концепция механизмов развития лекарственной гиперчувствительности. Иммунология, аллергология, инфектология. 2017; 2:70-75.
  16. White K.D., Chung W.H., Hung S.I., et al. Evolving models of the immunopathogenesis of Tcell-mediated drug allergy: the role of host, pathogens, and drug response. J. Allerg. Clin. Immunol. 2015;136(2):219-34. doi: 10.1016/j.jaci.2015.05.05016.
  17. Watkins S., Pichler W.J. Sulfamethoxazole induces a switch mechanism in T. cell receptors containing TCRVf320-1, altering pHLA recognition. PLoS One. 2013;8(10):article e76211. Doi:org/10.1371/journal.pone.0076211.
  18. Williams K.W., Sharma H.P. Anaphylaxis and urticarial. Immunol. Allerg. Clin. North America. 2015;35(1):199-219. doi: 10.1016/j.iac.2014.09.010.
  19. MacGlashan Jr. D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clin. Exper. Allerg. 2010;40(9):1365-1377. doi: 10.1111/j.1365-2222.2010.03572.x.
  20. MacGlashan Jr. D.W. Basophil activation testing. J. Allerg. Clin. Immunol. 2013;132(4):777-787. Doi: https://doi.org/10.1016/jjaci.2013.06.038.
  21. Munoz-Cano R., Picado C., Valero A., Bartra J. Mechanisms of anaphylaxis beyond IgE. J. Investig. Allerg. Clin. Immunol. 2016;26(2):73-82. doi: 10.18176/jiaci.0046.
  22. Finkelman F.D., Khodoun M.V., Strait R. Human IgE-independent systemic anaphylaxis. J. Allerg. Clin. Immunol. 2016;137(6):1674-80. Doi: 10.1016/j. jaci.2016.02.015.
  23. Vadas P., Gold M., Perelman B., et al. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. New Engl. J. Med. 2008;358(1):28- 35. doi: 10.1056/NEJMoa070030.
  24. Van der Heijden J., Geissler J., van Mirre E., et al. A novel splice variant of FcyRIIa: a risk factor for anaphylaxis in patients with hypogammaglobulinemia. J. Allerg. Clin. Immunol. 2013;131(5): 1408-16.e5. Doi: 10.1016//. jaci.2013.02.009.
  25. Vassallo R.R. Review: IgA anaphylactic transfusion reactions. Part I. Laboratory diagnosis, incidence, and supply of IgA-deficient products. Immunohematol. 2004;20(4):226-233.
  26. Steenholdt C., Svenson M., Bendtzen K., et al. Acute and delayed hypersensitivity reactions to infliximab and adalimumab in a patient with Crohn’s disease. J. Crohn’s Colit. 2012;6(1):108-111. doi: 10.1016/j.crohns.2011.08.001.
  27. Baert F., Noman M., Vermeire S., et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. New Engl. J. Med. 2003;348(7):601-608. doi: 10.1056/NEJMoa020888.
  28. Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biological. Mol. Immunol. 2014;61(2):163-173. doi: 10.1016/j.molimm.2014.06.038.
  29. Kishimoto T.K., Viswanathan K., Ganguly T., et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. New Engl. J. Med. 2008;358(23):2457-2467. doi: 10.1056/NEJMoa0803200.
  30. Veien M., Szlam F., Holden J.T., et al. Mechanisms of nonimmunological histamine and tryptase release from human cutaneous mast cells. Anesthesiol. 2000;92(4):1074-1081.
  31. Blunk J.A., Schmelz M., Zeck S., et al. Opioid-induced mast cell activation and vascular responses is not mediated by p-opioid receptors: an in vivo microdialysis study in human skin. Anesth. Analg. 2004; 98(2):364-370.
  32. Subramanian H., Gupta K., Ali H. Roles of Masrelated G. protein-coupled receptor X2 on mast cell-mediated host defense, pseudoallergic drug reactions, and chronic inflammatory diseases. J. Allerg. Clin. Immunol. 2016;138(3):700- 710. doi: 10.1016/j.jaci.2016.04.051.
  33. McNeil B.D., Pundir P., Meeker S., et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015;519(7542):237-241. doi: 10.1038/nature14022.
  34. Posadas S.J., Padial A., Torres M.J., et al. Delayed reactions to drugs show levels of perforin, granzyme B., and Fas-L to be related to disease severity. J. Allerg. Clin. Immunol. 2002;109(1):155-161. Doi: https://doi.org/10.1067/ mai.2002.120563.
  35. Viard I., Wehrli P., Bullani R., et al. Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science. 1998;282(5388):490-3.
  36. Nassif A., Bensussan A., Dorothee G., et al. Drug specific cytotoxic T-cells in the skin lesions of a patient with toxic epidermal necrolysis. J. Investig. Dermatol. 2002;118(4):728-733. doi: 10.1046/j.1523-1747.2002.01622.x.
  37. Voskoboinik I., Whisstock J.C., Trapani J.A. Perforin andgranzymes:function, dysfunction and human pathology. Nat. Rev. Immunol. 2015;15(6):388-400. doi: 10.1038/nri3839.
  38. Chung W.H., Hung S.I., Yang J.Y., et al. Granulysin is a key mediator for disseminated keratinocyte death in StevensJohnson syndrome and toxic epidermal necrolysis. Nat. Med. 2008;14(12):1343-1350. Doi: 10.1038/ nm.1884.
  39. Abe R., Yoshioka N., Murata J., Fujita Y., Shimizu H. Granulysin as a marker for early diagnosis of the Stevens Johnson syndrome. Ann. Intern. Med. 2009;151(7):514-5. doi: 10.7326/0003-4819-151-7-200910060-00016.
  40. Weinborn M., Barbaud A., Truchetet F., et al. Histopathological study of six types of adverse cutaneous drug reactions using granulysin expression. Intern. J. Dermatol 2016;55(11):1225-1233. doi: 10.1111/ijd.13350.
  41. SC S., Mockenhaupt M., Wolkenstein P., et al. Interleukin 15 is associated with severity and mortality in StevensJohnson syndrome/toxic epidermal necrolysis. J. Investig. Dermatol 2017;137:1065-1073. doi: 10.1016/j.jid.2016.11.034.
  42. Liu Z.G. Molecular mechanism of ФНО signaling and beyond. Cell. Res. 2005;15(1):24-27. doi: 10.1038/sj.cr.7290259.
  43. Paquet P., Nikkels A., Arrese J.E., et al. Macrophages and tumor necrosis factor a in toxic epidermal necrolysis. Arch. Dermatol. 1994;130(5):605-608. doi: 10.1001/archderm.1994.01690050073012.
  44. Paul C., Wolkenstein P., Adle H., et al. Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br. J. Dermatol. 1996;134(4):710-714.
  45. Nassif A., Moslehi H., Le Gouvello S., et al. Evaluation of the potential role of cytokines in toxic epidermal necrolysis. J. Investig. Dermatol. 2004;123(5):850- 855. doi: 10.1111/j.0022-202X.2004.23439.x.
  46. Caproni M., Torchia D., Schincaglia E., et al. Expression of cytokines and chemokine receptors in the cutaneous lesions of erythema multiforme and Stevens-John son syndrome/ toxic epidermal necrolysis. Br. J. Dermatol. 2006;155(4):722-728. Doi: 10.11U/j.1365-2133.2006.07398.x.
  47. Halevy S. Acute generalized exanthematous pustulosis. Curr. Opin. Allerg. Clin. Immunol. 2009;9(4):322-328. doi: 10.1097/ACI.0b013e32832cf64e.
  48. Schaerli P., Britschgi M., Keller M., et al. Characterization of human T. cells that regulate neutrophilic skin inflammation. J. Immunol. 2004;173(3):2151- 2158.
  49. Britschgi M., Pichler W.J. Acute generalized exanthematous pustulosis, a clue to neutrophil-mediated inflammatory processes orchestrated by T. cells. Curr. Opin. Allerg. Clin. Immunol. 2002;2(4):325-331.
  50. Navarini A.A., Valeyrie-Allanore L., Setta-Kaffetzi N., et al. Rare variations in IL36RN in severe adverse drug reactions manifesting as acute generalized exanthematous pustulosis. J. Investig. Dermatol. 2013;133(7):1904-1907. doi: 10.1038/jid.2013.44.
  51. Song H.S., Kim S.J., Park T.I., et al. Immunohistochemical comparison of IL-36 and the IL-23/ Th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann. Dermatol. 2016;28(4):451-456. doi: 10.5021/ad.2016.28.4.451.
  52. Walsh S.A., Creamer D. Drug reaction with eosinophilia and systemic symptoms (DRESS): a clinical update and review of current thinking. Clin. Exper. Dermatol 2011;36(1):6-11. doi: 10.1111/j.1365-2230.2010.03967.x.
  53. Komatsu-Fujii T., Chinuki Y., Niihara H., et al. The thymus and activation-regulated chemokine (TARC) level in serum at an early stage of a drug eruption is a prognostic biomarker of severity of systemic inflammation. Allerg. Intern. 2018;67(1):90-95. doi: 10.1016/j.alit.2017.06.001.
  54. Ogawa K., Morito H., Hasegawa A., et al. Identification of thymus and activation-regulated chemokine (TARC/CCL17) as a potential marker for early indication of disease and prediction of disease activity in drug-induced hypersensitivity syndrome (DIHS)/drug rash with eosinophilia and systemic symptoms (DRESS). J. Dermatol. Sci. 2013;69(1):38-43. Doi: 10.1016/j. jdermsci.2012.10.002.
  55. Tapia B., Padial A., Sanchez-Sabate E., et al. Involvement of CCL27-CCR10 interactions in drug-induced cutaneous reactions. J. Allerg. Clin. Immunol. 2004;114(2):335-340. doi: 10.1016/j.jaci.2004.04.034.
  56. Correia O., Delgado L., Barbosa I.L., et al. Increased interleukin 10, tumor necrosis factor a, and interleukin 6 levels in blister fluid of toxic epidermal necrolysis. J. Am. Acad. Dermatol. 2002;47(1):58-62.
  57. Paquet P., Paquet F., Al Saleh W., et al. Immunoregulatory effector cells in drug-induced toxic epidermal necrolysis. Am. J. Dermatopathol. 2000;22(5): 413-417.
  58. Chung W.H., Chang W.C., Stocker S.L., et al. Insights into the poor prognosis of allopurinol-induced severe cutaneous adverse reactions: the impact of renal insufficiency, high plasma levels of oxypurinol and granulysin. Ann. Rheum. Dis. 2015;74(12):2157-2164. doi: 10.1136/annrheumdis-2014-205577.
  59. Takahashi R., Kano Y., Yamazaki Y., et al. Defective regulatory T. cells in patients with severe drug eruptions: timing of the dysfunction is associated with the pathological phenotype and outcome. J. Immunol. 2009;182(12):8071- 8079. doi: 10.4049/jimmunol.0804002.
  60. Shiohara T., Inaoka M., Kano Y. Drug-induced hypersensitivity syndrome (DIHS): a reaction induced by a complex interplay among herpesviruses and antiviral and antidrug immune responses. Allerg. Intern. 2006;55(1):1-8. doi: 10.2332/allergolint.55.1.
  61. Kardaun S.H., Sekula P., Valeyrie-Allanore L., et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): an original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 2013;169(5):1071-80. doi: 10.1111/bjd.12501.
  62. Shiohara T., Kurata M., Mizukawa Y., Kano Y. Recognition of immune reconstitution syndrome necessary for better management of patients with severe drug eruptions and those under immunosuppressive therapy. Allerg. Intern. 2010;59(4):333-343. doi: 10.2332/allergolint.10-RAI-026.
  63. Shiohara T., Ushigome Y., Kano Y., Takahashi R. Crucial role of viral reactivation in the development of severe drug eruptions: a comprehensive review. Clin. Rev. Allerg. Immunol. 2015;49(2):192-202. Doi: 10.1007/ s12016-014-8421-3.
  64. Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по диагностике аллергических заболеваний. М., 2015.
  65. Российская ассоциация аллергологов и клинических иммунологов. Федеральные клинические рекомендации по диагностике и терапии анафилаксии. М., 2015.
  66. Brockow K., PRzybilla B., Aberer W., et al. Guideline for the diagnosis of drug hypersensitivity reactions. Allerg. J. Intern. 2015;24(3):94-105. Doi: 10.1007/ s40629-015-0052-60.
  67. Елисеева Т.И., Балаболкин И.И. Аллергические реакции на лекарственные средства: современные представления (обзор). Современные технологии в медицине. 2016;8(1):159-171. doi: 10.17691/stm2016.8.1.22. doi: 10.17691/stm2016.8.1.22.
  68. Мясникова Т.Н., Романова Т.С., Хлудова Л.Т., Латышева Т.В. Диагностика лекарственной аллергии: современный взгляд на проблему. РМЖ. 2018;8(1):28-32.
  69. Simons F.E., Ardusso L.R., Bilo M.B., et al. 2012 update: World Allergy Organization guidelines for the assessment and management of anaphylaxis. Curr. Opin. Allerg. Clin. Immunol. 2012;12(4):389-399. Doi:10.1097/ ACI.0b013e328355b7e4
  70. Lin R.Y., Schwartz L.B., Curry A., et al. Histamine and tryptase levels in patients with acute allergic reactions: an emergency department-based study. J. Allerg. Clin. Immunol. 2000;106(1):65- 71. doi: 10.1067/mai.2000.107600
  71. Simons F.E., Ardusso L.R., Bilo M.B., et al. World Allergy Organization anaphylaxis guidelines: summary. J. Allerg. Clin. Immunol. 2011;127(3):587- 93.e22. doi: 10.1016/j.jaci.2011.01.038
  72. Simons F.E., Frew A.J, Ansotegui I.J, et al. Risk assessment in anaphylaxis: current and future approaches. J. Allerg. Clin. Immunol. 2007;120(1):S2-S24. doi: 10.1016/j.jaci.2007.05.001.
  73. Gomez E., Torres M.J., Mayorga C., Blanca M. Immunologic evaluation of drug allergy. Allerg., Asthma Immunol. Res. 2012;4(5):251-263. Doi:10.4168/ aair.2012.4.5.251.
  74. Blanca M., Mayorga C., Torres M.J., et al. Clinical evaluation of Pharmacia CAP system ™ RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy. Allerg. 2001;56(9):862-870.
  75. Dona I., Torres M.J., Montanez M.I., Fernandez T.D. In vitro diagnostic testing for antibiotic allergy. Allerg. Asthma Immunol. Res. 2017;9(4):288-298. doi: 10.4168/aair.2017.9.4.288.
  76. Mayorg C., Dona I., Perez-Inestrosa E., et al. The value of in vitro tests to diminish drug challenges. Intern. J. Mol. Sci. 2017;18(6):1222. doi: 10.3390/ijms18061222.
  77. Mayorga C., Celik G., Rouzaire P., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACIDrug Allergy Interest Group position paper. Allerg. 2016;71(8):1103-1134. doi: 10.1111/all.12886.
  78. Hoffmann H.J., Santos A.F., Mayorga C., et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allerg. 2015;70(11):1393-1405. doi: 10.1111/all.12698.
  79. Leysen J., Sabato V., Verweij M.M., et al. The basophil activation test in the diagnosis of immediate drug hypersensitivity. Exp. Rev. Clin. Immunol. 2011;7(3):349-355. doi: 10.1586/eci.11.14.
  80. De Week A.L., Sanz M.L., Gamboa P.M., et al. Diagnosis of immediate-type в-lactam allergy in vitro by flow-cytometric basophil activation test and sulfidoleukotriene production: a multicenter study. J. Investig. Allerg. Clin. Immunol. 2009;19(2):91109.
  81. Saito N., Abe R., Yoshioka N., et al. Prolonged elevation of serum granulysin in drug-induced hypersensitivity syndrome. Br. J. Dermatol. 2012;167(2):452- 453. doi: 10.1111/j.1365-2133.2012.10921.x.
  82. Feldmeyer L., Heidemeyer K., Yawalkar N. Acute generalized exanthematous pustulosis: pathogenesis, genetic background, clinical variants and therapy. Intern. J. Mol. Sci. 2016;17(8):1214. doi: 10.3390/ijms17081214.
  83. Mallal S., Phillips E., Carosi G., et al. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008;358(6):568-579. doi: 10.1056/NEJMoa0706135.
  84. Phillips E.J., Chung W.H., Mockenhaupt M., et al. Drug hypersensitivity: pharmacogenetics and clinical syndromes. J. Allerg. Clin. Immunol. 2011;127(3):60-66. doi: 10.1016/j.jaci.2010.11.046
  85. Colombo S., Rauch A., Rotger M., et al. The HCP5 single-nucleotide polymorphism: a simple screening tool for prediction of hypersensitivity reaction to abacavir. J. Infect. Dis. G118;698(6):864-867. doi: 11.1186/591184.
  86. Wheatley L.M., Plaut M., Schwaninger J.M., et al. Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. J. Allerg. Clin. Immunol. 2015;136(2):262-271, e262. doi: 10.1016/j.jaci.2015.05.027.
  87. Chung W.H., Hung S.I., Hong H.S., et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature. 2004;428(6982):486. doi: 10.1038/428486a.
  88. Locharernkul C., Loplumlert J., Limotai C., et al. Carbamazepine and phenytoin induced Stevens-Johnson syndrome is associated with HLA-B*150( allele in Thai population. Epilepsia. 2008;49(12):2087-2091. Doi:10.1111/ j.1528-1167.2008.01719.x.
  89. Mehta T.Y., Prajapati L.M., Mittal B., et al. Association of HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome among Indians. Indian J. Dermatol. Venereol. Leprol. 2009;75(6):579-582. doi: 10.4103/0378-6323.57718.
  90. Tangamornsuksan W., Chaiyakunapruk N., Somkrua R., et al. Relationship between the HLA-B*1502 allele and carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis: a systematic review and meta-analysis. JAMA Dermatol. 2013;149(9):1025-1032. Doi:10.1001/ jamadermatol.2013.4114.
  91. Pirmohamed M., Ostrov D.A., Park B.K. New genetic findings lead the way to a better understanding of fundamental mechanisms of drug hypersensitivity. J. Allerg. Clin. Immunol. 2015;136(2):236-244. doi: 10.1016/j.jaci.2015.06.022.
  92. Hung S.I., Chung W.H., Liou L.B., et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA. 2005;102(11):4134-4139. doi: 10.1073/pnas.0409500102.
  93. Lonjou C., Borot N., Sekula P., et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet. Genomics. 2008;18(2):99-107. Doi:10.1097/ FPC.0b013e3282f3ef9c.
  94. Elzagallaai A.A., Rieder M.J. In vitro testing for diagnosis of idiosyncratic adverse drug reactions: implications for pathophysiology. Br. J. Clin. Pharmacol. 2015;80(4):889-900. doi: 10.1111/bcp.12505.
  95. Rive C.M., Bourke J., Phillips E.J. Testing for drug hypersensitivity syndromes. Clin. Biochem. Rev. 2013;34(1):15-38.
  96. Porebski G. In vitro assays in severe cutaneous adverse drug reactions: are they still research tools or diagnostic tests already? Intern. J. Mol. Sci. 2017;18(8):1737. doi: 10.3390/ijms18081737.
  97. Nagao-Dias A.T., Teixeira F.M., Coelho H.L. Diagnosing immune-mediated reactions to drugs. Allerg. Immunopathol. 2009;37(2):98-104.
  98. Kano Y., Hirahara K., Mitsuyama Y., et al. Utility of the lymphocyte transformation test in the diagnosis of drug sensitivity: dependence on its timing and the type of drug eruption. Allerg. 2007;62(12):1439-1444. doi: 10.1111/j.1398-9995.2007.01553.x.
  99. Pichler W.J., Tileh J. The lymphocyte transformation test in for the diagnosis of drug hypersensitivity. Allerg. 2004;59(8):809-20. doi: 10.1111/j.1398-9995.2004.00547.x.
  100. Beeler A., Pichler W.J. In vitro Tests of T-Cell-Mediated Drug Hypersensitivity. Drug Hypersensensivity. Basel, Karger, 2007. P. 380-390. doi: 10.1111/j.1398-9995.2007.01516.x.
  101. Porebski G., Gschwend-Zawodniak A., Pichler W.J. In vitro diagnosis of T. cell-mediated drug allergy. Clin. Exp. Allerg. 2011;41(4):461-470. doi: 10.1111/j.1365-2222.2011.03701.x.
  102. Srinoulprasert Y., Pichler W.J. Enhancement of drugspecific lymphocyte proliferation using CD25hi-depleted CD3+effector cells. Intern. Arch. Allerg. Immunol. 2014;163(3):198-205. doi: 10.1159/000358491. Epub. 2014;13.
  103. Kato K., Kawase A., Azukizawa H., et al. Novel interferon-y enzyme-linked immunospot assay using activated cells for identifying hypersensitivity-inducing drug culprits. J. Dermatol. Sci. 2017;86(3):222-229. doi: 10.1016/j.jdermsci.2017.03.007.
  104. Chung W.H., Pan R.Y., Chu M.T., et al. Oxypurinolspecific T. cells possess preferential TCR clonotypes and express granulysin in allopurinol-induced severe cutaneous adverse reactions. J. Investig. Dermatol. 2015;135(9):2237-2248. doi: 10.1038/jid.2015.165.
  105. Barbaud A., Collet E., Milpied B., et al. A multicentre study to determine the value and safety of drug patch tests for the three main classes of severe cutaneous adverse drug reactions. Br. J. Dermatol. 2013;168(3):555-562. doi: 10.1111/bjd.12125.
  106. Lin Y.T., Chang Y.C., Hui R.C., et al. A patch testing and cross-sensitivity study of carbamazepine-induced severe cutaneous adverse drug reactions. J. Eur. Acad. Dermatol. Venerol. 2013;27(3):356-64. doi: 10.1111/j.1468-3083.2011.04418.x.
  107. Torres M.J., Romano A., Celik G., et al. Approach to the diagnosis of drug hypersensitivity reactions: similarities and differences between Eur. North Am. Clin. Translat. Allerg. 2017;7(1):7. doi: 10.1186/s13601-017-0144-0.
  108. Joint Task Force on Practice Parameters, American Academy of Allerg., Asthma and Immunology et al. Drug allergy: an updated practice parameter. Ann. Allerg. Asthma Immunol. 2010;105(4):259-73.e78. doi: 10.1016/j.anai.2010.08.002.
  109. Brockow K., Romano A., Blanca M., et al. General considerations for skin test procedures in the diagnosis of drug hypersensitivity. Allerg. 2002;57(1):45-51.
  110. Duong T.A., Valeyrie-Allanore L., Wolkenstein P., Chosidow O. Severe cutaneous adverse reactions to drugs. Lancet. 2017;390(10106):1996-2011. doi: 10.1016/S0140-6736(16)30378-6.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies