Using different equations for estimating glomerular filtration rate in patients with type 1 diabetes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Aim. To compare different methods of estimating GFR calculated by creatinine and cystatin С in patients with type 1 diabetes with normal and moderately decreased renal filtration function. Material and methods. The study involved 57 patients with type 1 diabetes, 37 men and 20 women, aged from 21 to 57 years (median ЗО years), with disease duration after diagnosis from 33 to 2 years (median 8 years). The control group comprised 15 non-diabetic people aged 19 to 42 years (median - 28 years), with normal levels of abuminuria and blood creatinine. The majority of patients with type 1 diabetes were found to have decompensated diabetes mellitus. The mean value of glycated hemoglobin in patients was 8%. The renal glomerular function was estimated by level of GFR and triple testing of urine albumin excretion. Renal tubular function in type 1 diabetes was tested by examining serum cystatin С. Results. GFR estimating equations, which did not include serum of cystatin С produced higher GFR. As a result, the majority of patients had normal or elevated GFR showing hyperfiltration. Using cystatin-C-based equations resulted in a several-fold reduction in the number of patients with hyperfiltration and increased number of cases with GFR below 90 ml/min/m2. The assessment of the relationship between SDMA and GFR showed negative correlation with both cystatin-C-based and creatinine-based equations. Conclusion. These findings revealed that GFR estimating equations based on both creatinine and cystatin С produce more accurate results compared with the reference estimating equations.

Texto integral

Acesso é fechado

Bibliografia

  1. Дедов И.И., Викулова О.К., Сухарева О.Ю. Скрининг диабетической нефропатии в Российской Федерации. В: Шестакова М.В., Дедов И.И. (ред.). Сахарный диабет и хроническая болезнь почек. М., 2009. С. 39-59.
  2. Fioretto P., Caramori M.L., Mauer M. The kidneys in diabetes: dynamic pathways of injury and repair. The Camillo Golgi Lecture 2007. Diabetologia. 2008;51:1051-1057.
  3. Бондарь И.А., Климонтов В.В. Функциональная морфология почек при сахарном диабете. В кн.: Шестакова М.В., Дедов И.И., ред. Сахарный диабет и хроническая болезнь почек. М., 2009. С. 149-176.
  4. Дедов И.И., Шестакова М.В. Сахарный диабет и артериальная гипертензия. М., 2006.
  5. Fioretto P., Sutherland D.E., Najafîan B. et al. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69:907-912.
  6. Viberti G.C., Wiseman M.J. The kidney in diabetes: significance of the early abnormalities. Clin. Endocrinol. Metab. 1986;15:753-782.
  7. Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with Type 1 diabetes mellitus: a seven-year prospective study. Diabet. Med. 1999;16:918-925.
  8. Stone M.L., Craig M.E., Chan A.K., Lee J.W., Verge C.F., Donaghue K.C. Natural history and risk factors for microalbuminuria in adolescents with type 1 diabetes: a longitudinal study. Diabetes Care 2006;29: 2072-2077.
  9. Jerums G., Panagiotopoulos S., Maclsaac R.J. Diabetic nephropathy: epidemiology and clinical description. In: Boner G., Cooper M.E., ed. Management of Diabetic Nephropathy. L., N.-Y. 2003. Р. 37-60.
  10. Valmadrid C.T., Klein R., Moss S.E., Klein B.E. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch. Intern. Med. 2000;160:1093- 1100.
  11. Casiglia E.,Zanette G., Mazza A., Donadon V., Donada C., Pizziol A., Tikhonoff V., Palatini P., Pessina A.C. Cardiovascular mortality in non- insulin-dependent diabetes mellitus. A controlled study among 683 diabetics and 683 age- and sex-matched normal subjects. Eur. J. Epidemiol. 2000;16:677- 684.
  12. Torffvit O., Lovestam-Adrian M., Agardh E., Agardh C.D. Nephropathy, but not retinopathy, is associated with the development of heart disease in Type 1 diabetes: a 12-year observation study of 462 patients. Diabet. Med. 2005;22(6):723-729.
  13. Groop P.H., Thomas M.C., Moran J.L., Wadèn J., Thorn L.M., Mäkinen V.P., Rosengàrd-Bdrlund M., Saraheimo M., Hietala K., Heikkilä O., Forsblom C.; FinnDiane Study Group. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58:1651-1658.
  14. Мухин Н.А., Фомин В.В., Моисеев С.В. Микроальбуминурия - универсальный маркер неблагоприятного прогноза. Клиническая медицина. 2008;11:4-9.
  15. Konyukh E.A., Paramonova N.S. Clinical features of acute and chronic glomerulonephritis in children with endothelial dysfunction. Zhurnal GrGMU. 2010;2:149 (in Russ.).
  16. Knight E.L., Verhave J. C., Spiegelman D., Hillege H.L., deZeeuw D., Curhan G. C., de Jong P.E. Factors in fluencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65:1416-1421.
  17. Lemieux C., Maliba R., Favier J., Théorêt J.F., Merhi Y., Sirois M.G. Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood. 2005;105(4):1523-1530.
  18. Stevens L.A., Schmid C.H., Greene T., Li L., Beck G.J., Joffe M.M., Froissart M., Kusek J.W., Zhang Y.L., Coresh J., Levey A.S. Factors other than glo-merularfiltration rate affect serum cystatin C levels. Kidney Int. 2009;75:652-660.
  19. Magee G.M., Bilous R.W., Cardwell C.R., Hunter S.J., Kee F., Fogarty D.G. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A metaanalysis. Diabetologia. 2009;52:691-697.
  20. Köttgen A., Selvin E., Stevens L.A., Levey A.S., Van Lente F., Coresh J. Serum cystatin C in the United States: the Third National Health and Nutrition Examination Survey (NHANESIII). Am. J. Kidney Dis. 2008;51:385-394.
  21. Stam F., van Guldener C., Dekker J.M., Heine R.J., Bouter L.M., Stehouwer C.D. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J. Am. Soc. Nephrol. 2006;2:537-545.
  22. Berezinets O.L., Rossolovskiy A.N., Blyumberg B.I. Modern aspects of future developments and the progression of coronary artery disease in patients with chronic kidney disease. Byulleten' meditsinskikh Internet-konferentsiy. 2014;4(1):72-74(in Russ.).
  23. Landray M.J., Wheeler D.S., Newman D.J., Blann A.D., McGlynn F.J., Ball S., Townend J.N., Baigent C. Inflammation, Endothelial dysfunction and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) Study. Am. J. Kidney Dis. 2004;43:244-253.
  24. Martens C.R., Edwards D.G. Peripheral Vascular Dysfunction in Chronic Kidney Disease. Cardiol. Res. Pract. 2011;1:2-6.
  25. Böger R.H., Lentz S.R., Bode-Böger S.M., Knapp H.R., Haynes W.G. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin. Sci (Colch). 2001;100(2):161-167.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies