The relationship between the concentration of fibroblast growth factor-23 and central hemodynamics in patients with chronic kidney disease


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Aim of the study: examine the relationship between the concentration of fibroblast growth factor-23 and central hemodynamics in patients with chronic kidney disease (ckd). material and methods. a total of 78 patients were examined, including 45 women and 33 men. the average age of the examined patients is 55 years old (minimum 23, maximum 84). All patients underwent a comprehensive clinical and laboratory examination. the parameters of central hemodynamics [systolic blood pressure (SBP, mm hg), diastolic blood pressure (DBP, mm hg) and central systolic pressure (blood pressure, mm Hg) were investigated]. Fibroblast growth factor- 23 (fgf-23) (pmol/L) concentrations were determined, phosphorus (mmol/L), c-reactive protein (CRP, iu/L) and creatinine (mmol/L) of blood plasma. to calculate the glomerular filtration rate (gfr, ml/min), the formula ckd-epi (Chronic kidney disease epidemiology collaboration) 20H was used. According to the kdigo recommendations (Kidney Disease: Improving Global Outcomes) of 2002, the diagnosis of ckd was established on the basis of changes in urinary sediment or a decrease in estimated gfr (<60 ml/min), an increase in blood plasma creatinine for more than three months. results. the mean age, body mass index, and central and systolic blood pressure (bp) values were significantly higher in patients with stage 4 ckd. persons with a high content of c-reactive protein were significantly more often detected in stages 3b and 5 of ckd. the level of phosphatemia was significantly higher among patients with stages 4 and 5 of ckd. median and interquartile plasma fgf-23 concentrations were significantly high at stages 3a, 4, and 5 of ckd. the existence of a close relationship between the content of fgf-23 and the level of central and systolic blood pressure, the concentration of phosphorus and creatinine. An inverse relationship was obtained between a decrease in glomerular filtration rate and an increase in the concentration of fgf-23. Conclusions. In ckd patients, plasma fgf-23 concentration begins to increase even at the pre-dialysis stage. at the same time, high levels of fgf-23 blood plasma is recorded at the 4th stage of ckd and is associated with an increase in central and systolic blood pressure, body mass index, including hyperphosphatemia.

全文:

受限制的访问

作者简介

Ilkhom Murkamilov

Kyrgyz State Medical Academy named after I.K. Akhunbaeva; Kyrgyz-Russian Slavic University

Email: murkamilov.i@mail.ru
PhD in Medical Sciences, Nephrologist, Deputy Associate Professor at the Department of Faculty Therapy Bishkek, Kyrgyzstan

参考

  1. Centers for Disease Control and Prevention et al. Chronic kidney disease in the United States, 2019.
  2. National Institutes of Health. 2018 USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases;2018.
  3. Есаян А.М., Нимгирова А.Н., Каюков И.Г., Яковенко А.А. Роль фактора роста фибробластов 23-го типа в развитии кардиоваскулярных осложнений и нарушений кальций-фосфорного обмена у пациентов с хронической болезнью почек. Ученые записки Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова. 2015;22(1):38-42. Doi: https://doi.org/10.24884/1607-4181-2015-22-1-38- 42.
  4. Милованова Л.Ю., Милованов Ю.С., Козловская Л.В., Мухин Н.А. Сывороточные уровни морфогенетических белков-фактора роста фибробластов-23 (FGF-23) и Клото (Klotho) при ХБП: клиническое значение. Клин. нефрология.2013;2:10-18
  5. Miyata K.N., Nast C.C., Dai T., et al. Renal matrix Gla protein expression increases progressively with CKD and predicts renal outcome. Exp. Mol. Pathol. 2018;105(1):120-129. Doi: https://doi.org/10.1016/j.yexmp.2018.07.001.
  6. Griffin T.P., Islam M.N., Wall D., et al. Plasma dephosphorylated-uncarboxyl-ated Matrix Gla-Protein (dp-ucMGP): reference intervals in Caucasian adults and diabetic kidney disease biomarker potential. Sci. Reports. 2019;9(1):1-13. doi: 10.1038/s41598-019-54762-2.
  7. Мухин Н.А., Милованов Ю.С., Козловская Л.В. и др. Уровень морфогенетического белка-фактора роста фибробластов 23-го типа (FGF-23) в сыворотке крови как маркер эффективности терапии гиперфос-фатемии связывающими фосфат препаратами при хронической болезни почек. Тер. архив. 2016;88(4):41-45. doi: 10.17116/terarkh201688441-45.
  8. Riminucci M., Collins M.T., Fedarko N. S., et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest. 2003;112(5):683-692. doi: 10.1172/JCI18399.
  9. Erben R.G. Physiological actions of fibroblast growth factor-23. Front. Endocrinol. 2018;9. doi: 10.3389/fendo.2018.00267.
  10. Батюшин М.М., Кастанаян А.А., Руденко Л.И., Чистяков В.А. Фактор роста фибробластов 23. Физиологическая роль и участие в процессах сосудистой кальцификации при хронической почечной недостаточности. Журн. фундаментальной медицины и биологии. 2014;2:4-8.
  11. Шутов Е.В. Значение фактора роста фибробластов-23 у больных хронической болезнью почек - обзор современных исследований. Леч. врач. 2012;8:35-42
  12. Liu S., Tang W., Zhou J., et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 2006;17(5):1305-1315. Doi: https://doi.org/10.1681/ASN.2005111185.
  13. Khosravi A., Cutler C.M., Kelly M. H., et al. Determination of the elimination half-life of fibroblast growth factor-23. J. Clin. Endocrinol. Metab. 2007;92(6):2374-2377. Doi: https://doi.org/10.1210/jc.2006-2865.
  14. Ix J.H., Shlipak M.G., Wassel C.L., Whooley M.A. Fibroblast growth factor-23 and early decrements in kidney function: The Heart and Soul Study. Nephrol. Dial. Transplant. 2010;25:993-997. doi: 10.1093/ndt/ gfp699.
  15. Desjardins L., Liabeuf S., Renard C., et al. FGF23 is independently associated with vascular calcification but not bone mineral density in patients at various CKD stages. Osteoporosis Int. 2012;23(7):2017-2025. Doi: https://doi.org/10.1007/s00198-011-1838-0.
  16. Дзгоева Ф.У., Сопоев М.Ю., Бестаева Т.Л. и др. Фактор роста фибробластов-23 и сердечнососудистые осложнения при хронической болезни почек. Нефрология. 2015;19(5):49-56.
  17. Izumo S., Lompre A.M., Matsuoka R., et al. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J. Clin. Invest.1987;79(3):970-977. doi: 10.1172/JCI112908.
  18. Molkentin J.D., Lu J.R., Antos C.L., et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215-228. https:// doi.org/10.1016/S0092-8674(00)81573-1.
  19. Komuro I., Yazaki Y. Control of cardiac gene expression by mechanical stress. Ann. Rev. Physiol. 1993;55(1):55-75.
  20. Добронравов В.А. ^временный взгляд на патофизиологию вторичного гиперпаратиреоза: роль фактора роста фибробластов 23 и Klotho. Нефрология. 2011;4:11-20. Doi: https://doi.org/10.24884/1561-6274-2011-15-4-11-20.
  21. Levey A.S., De Jong P.E., Coresh J., et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17-28. Doi: https://doi.org/I0.I038/ki.20I0.483.
  22. Levey A.S., Coresh J., Bolton K., et al. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. Kidney Dis. 2002;39(Suppl. 2)1:S1-266.
  23. Мелентьева А. А., Барыш ев а О.Ю., Везикова Н.Н., Хейфец Л.М. Роль фактора роста фибробластов 23 и фактора Klotho в развитии минерально-костных нарушений при хронической болезни почек. Курский научно-практический вестник «Человек и его здоровье». 2014;3:102-109.
  24. Gutierrez O.M., Wolf M., Taylor E.N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study. Clin. J. Am. Soc. Nephrol. 2011;6:2871-2878. Doi: 10.2215/ CJN.02740311.
  25. Antoniucci D.M., Yamashita T., Portale A.A. Dietary phosphorus regulates serum fi broblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab. 2006;91(8):3144-3149. Doi: https://doi.org/10.1210/ jc.2006-0021.
  26. Burnett S.M., Gunawardene S.C., Bringhurst F.R., et al. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J. Bone Miner. Res. 2006;21(8):1187-1196. Doi: https://doi.org/10.1359/ jbmr.060507.
  27. Juppner H. Phosphate and FGF-23. Kidney Int. 2011;79:S24-27. Doi: https:// doi.org/10.1038/ki.2011.27.
  28. Di Iorio B., Di Micco L., Torraca S., et al. Acute effects of very-low-protein diet on FGF23 levels: a randomized study. Clin. J. Am. Soc. Nephrol. 2012;7(4):581-587. Doi: https://doi.org/10.2215/CJN.07640711.
  29. Block G.A., Ix J.H., Ketteler M., et al. Phosphate homeostasis in CKD: report of a scientific symposium sponsored by the National Kidney Foundation. Am. J. Kidney Dis. 2013;62(3):457-473. Doi: https://doi.org/10.1053/j. ajkd.2013.03.042.
  30. Sabbagh Y., Giral H., Caldas Y., et al. Intestinal phosphate transport. Adv. Chron. Kidney Dis. 2011;18(2):85-90. Doi: https://doi.org/10.1053/j. ackd.2010.11.004.
  31. Labonte E.D., Carreras C.W., Leadbetter M.R., et al. Gastrointestinal inhibition of sodium-hydrogen exchanger 3 reduces phosphorus absorption and protects against vascular calcification in CKD. J. Am. Soc. Nephrol. 2015;26(5):1138-1149. doi: 10.1681/ASN.2014030317.
  32. Wolf M. Update onfibroblast growthfactor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737-747. Doi: https://doi.org/10.1038/ki.2012.176.
  33. Ruggenenti P., Perna A., Remuzzi G. ACE inhibitors to prevent end-stage renal disease: when to start and why possibly never to stop: a post hoc analysis of the REIN trial results. J. Am. Soc. Nephrol. 2001;12(12):2832-2837.
  34. Ding J., Tang Q., Luo B., et al. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-131 signaling pathway. Eur. J. Pharmacol. 2019;859:172549. Doi: https://doi.org/10.1016/j.ejphar.2019.172549.
  35. Czaya B., Faul C. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia. Int. J. Mol. Sci. 2019;20(17):4195. Doi: https://doi.org/10.3390/ ijms20174195.
  36. Musgrove J., Wolf M. Regulation and Effects of FGF23 in Chronic Kidney Disease. Ann. Rev. Physiol. 2019;82.
  37. Cheng N., He Y., Dang A., et al. Association between plasma fibroblast growth factor 23 and left ventricular mass index in patients with Takayasu arteritis. Clin. Rheumatol. 2020; 1-9. Doi: https://doi.org/10.1007/s10067-019-04895-6.
  38. Vervloet M.G., Larsson T.E. Fibroblast growth factor-23 and Klotho in chronic kidney disease. Kidney Int. Suppl. 2011;1(4)130-135. Doi: https://doi. org/10.1038/kisup.2011.29.
  39. Haffner D., Leifheit-Nestler M. Extrarenal effects of FGF23. Pediatr. Nephrol. 2017;32(5):753-765. Doi: https://doi.org/10.1007/s00467-016-3505-3.
  40. Adejumo O.A., Okaka E.I., Okwuonu C.G., et al. Serum C-reactive protein levels in pre-dialysis chronic kidney disease patients in southern Nigeria. Ghana Med. J. 2016;50(1):31-38. Doi: http://dx.doi.org/10.4314/gmj.v50i1.5.
  41. Benz K., Hilgers K.F., Daniel C., Amann K. Vascular calcification in chronic kidney disease: the role of inflammation. Int. J. Nephrol. 2018;7. Doi: https://doi.org/10.1155/2018/4310379.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##