Assessment of thermal resistance of snow cover in Spitsbergen

封面

如何引用文章

全文:

详细

Snow cover is an important factor that largely determines the thermal regime of the ground in the cold season. Thermal protective properties of snow cover are conditioned by its thermal resistance, equal to the ratio of the snow thickness to its thermal conductivity coefficient. The thermal resistance of the snow cover is equal to the sum of thermal resistances of its layers. Therefore, to assess the thermal resistance of the whole snow cover, the thermophysical parameters of each layer should be known that is a problem. Previously, assessment of the thermal resistance of snow cover was derived on the basis of data on the ground temperature with small fluctuations in the air temperature. In this case, the desired quantity of the thermal resistance is obtained with regards for all features of the snow thickness development at the time of measurement. This method is implemented with a quasi-stationary temperature distribution wityin the snow cover and ground. Mathematical modeling was used to assess the effect of small air temperature fluctuations on the snow surface temperature and the temperature gradient within the snow cover. The results of calculation demonstrated that the average temperature of the snow surface can be used to estimate the temperature gradient in a snow cover when its thickness exceeds 50 cm. Based on measurements of ground and air temperatures in the area of the Barentsburg weather station, the thermal resistance of the snow cover and its thermal conductivity coefficient were estimated. For the period 23-26 of March, 2023, the average value of the thermal resistance of the snow cover was equal to 3.23 m2·K/W at a standard deviation of 0.17 m2 K/W, and the thermal conductivity coefficient – 0.27 W/(m·K) at a standard deviation of 0.015 W/(m·K).

作者简介

N. Osokin

Institute of Geography, Russian Academy of Sciences

Email: alexandr_sosnovskiy@mail.ru
俄罗斯联邦, Moscow

A. Sosnovsky

Institute of Geography, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: alexandr_sosnovskiy@mail.ru
俄罗斯联邦, Moscow

参考

  1. Anisimov O.A., Streletsky D.A. Geocryological risks in the melting of permafrost soils. Arktika XXI vek. Estestvennye nauki. Arctic twenty-first century. Natural Sciences. 2015, 2 (3): 60–74. [In Russian].
  2. Varlamov S.P., Skachkov Yu.B., Skryabin P.N., Baluta V.I. Long-term variability of the thermal state in the upper horizons of the cryolithozone in Central Yakutia. Prirodnye resursy Arktiki i Subarktiki. Arctic and Subarctic Natural Resources. 2023, 28 (3): 398–414. [In Russian].
  3. Vtoroy otsenochnyy doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiyskoy Federatsii. The second assessment report of Roshydromet on climate change and its consequences on the territory of the Russian Federation. Moscow: Roshydromet, 2014: 58. p. [In Russian].
  4. Glyatsiologicheskiy slovar’. Glaciological Dictionary. Ed. V.M. Kotlyakov. Leningrad: Gidrometeoizdat, 1984: 528 p. [In Russian].
  5. Otchet o klimaticheskikh riskakh na territorii Rossiyskoy Federatsii. Report on climate risks on the territory of the Russian Federation. St. Petersburg: Climatic Center of Roshydromet, 2017: 106 p. [In Russian].
  6. Kolomyts E.G. Teoriya evolyucii v strukturnom snegovedenii. Theory of evolution in snow structural science. Moscow: GEOS, 2013: 435 p. [In Russian].
  7. Kotlyakov V.M., Sosnovsky A.V., Osokin N.I. Estimation of thermal conductivity of snow by its density and hardness in Svalbard. Led i Sneg. Ice and Snow. 2018, 58 (3): 343–352. [In Russian]. https://doi.org/10.15356/2076-6734-2018-3-343-352
  8. Kotlyakov V.M., Sosnovsky A.V. Estimation of the thermal resistance of snow cover based on the ground temperature. Led i Sneg. Ice and Snow. 2021, 61 (2): 195−205. [In Russian].
  9. Kuzmin P.P. Fizicheskiye svoystva snezhnogo pokrova. Physical properties of snow cover. Leningrad: Hydrometeoizdat, 1957: 179 p. [In Russian].
  10. Osokin N.I., Samoilov R.S., Sosnovsky A.V., Sokratov S.A., Zhidkov V.A. On esтimation тне influence of snow cover characteristics variabiliтy on soils freezing. Kriosfera Zemli. Cryosphere of the Earth. 1999, 3 (1): 3–10. [In Russian].
  11. Osokin N.I., Samoilov R.S., Sosnovsky A.V. Towards the assessment of heat and mass transfer in the surface layer of snow taking into account penetrating radiation. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 96: 127–132. [In Russian].
  12. Osokin N.I., Sosnovsky A.V., Chernov R.A. Influence of snow cover stratigraphy on its thermal resistance. Led i Sneg. Ice and Snow. 2013, 53 (3): 63−70. [In Russian]. https://doi.org/10.15356/2076-6734-2013-3-63-70
  13. Osokin N.I., Sosnovsky A.V. Field investigation of efficient thermal conductivity of snow cover on Spitsbergen. Led i Sneg. Ice and Snow. 2014, 54 (3): 50−58. [In Russian]. https://doi.org/10.15356/2076-6734-2014-3-50-58
  14. Osokin N.I., Sosnovskiy A.V. Influence of snow cover thermal resistance on permafrost stability. Kriosfera Zemli. Cryosphere of the Earth. 2016, 22 (3): 105–112. [In Russian]. https://doi.org/10.21782/KZ1560-7496-2016-3(105-112)
  15. Pavlov A.V. Energoobmen v landshaftnoy sfere Zemli. Energy exchange in the landscape sphere of the Earth. Novosibirsk, “Nauka”, 1984: 256 p. [In Russian].
  16. Pavlov A.V. Monitoring kriolitozony. Monitoring of cryolithozone. Novosibirsk: Geo, 2008: 229 p. [In Russian].
  17. Skachkov Yu.B. Assessment of modern variability of snow cover characteristics in Yakutia. Kriogennye resursy polyarnyh i gornyh regionov. Sostoyanie i perspektivy inzhenernogo merzlotovedeniya: Materialy mezhdunarodnoj konferencii. Proc. of the International. Conference “Cryogenic resources of polar and mountain regions. State and prospects of engineering permafrost science”. Tyumen, Express, 2008: 271–274. [In Russian].
  18. Building Code. SNiP 2.02.04–88. Osnovaniya i fundamenty na vechnomerzlyh gruntah. Basements and Foundations in Permafrost. GUP TCPP. Moscow, 1997: 52 p. [In Russian].
  19. Chernov R.A. Experimental determination of the effective thermal conductivity of depth hoar. Led i Sneg. Ice and Snow. 2013, 53 (3): 71–77. [In Russian].
  20. Sherstyukov A.B. Correlation of soil temperature with air temperature and snow depth in Russia. Kriosfera Zemli. Cryosphere of the Earth. 2008, 12 (1): 79–87. [In Russian].
  21. Sherstiukov A.B., Anisimov O.A. Assessment of the snow cover effect on soil surface temperature from observational data. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2018, 2: 17–25. [In Russian].
  22. Shmakin A.B., Osokin N.I., Sosnovsky A.V., Zazovskaya E.P., Borzenkova A.V. Influence of snow cover on soil freezing and thawing in the West Spitsbergen. Led i Sneg. Ice and Snow. 2013, 53 (4): 52−59. [In Russian]. https://doi.org/10.15356/2076-6734-2013-4-52-59
  23. Calonne N., Flin F., Morin S., Lesaffre B., du Roscoat S.R., Geindreau C. Numerical and experimental investigations of the effective thermal conductivity of snow. Geophys. Research Letters. 2011, 38: L23501. https://doi.org/10.1029/2011GL049234
  24. Hjort J., Streletskiy D., Dore G., Wu Q;, Bjella K., Luoto M. Impacts of permafrost degradation on infrastructure. Nature Reviews Earth & Environment. 2022, 3 (1): 24−38. https://doi.org/10.1038/s43017-021-00247-8
  25. Jan A., Painter S.L. Permafrost thermal conditions are sensitive to shifts in snow timing. Environmental Research Letters. 2020, 15: 084026.
  26. Riche F., Schneebeli M. Thermal conductivity of snow measured by three independent methods and anisotropy considerations. The Cryosphere. 2013, 7: 217–227.
  27. Stieglitz M., Déry S.J., Romanovsky V.E., Osterkamp T.E. The role of snow cover in the warming of arctic permafrost. Geophysical Research Letters. 2003, 30 (13): 1721–1724.
  28. Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journ. of Glaciology. 1997, 43. 143: 26–41.
  29. Suter L., Streletskiy D., Shiklomanov N. Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geography. 2019, 42: 267–286.
  30. Weather Archive in Barentsburg. Retrieved from: http://rp5.ru/archive.php?wmo_id=20107&lang=ru. Last access: 12 February 2024.

补充文件

附件文件
动作
1. JATS XML


Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可