Прорыв ледниково-подпрудного озера Спартаковское и изменения выводного ледника купола Семёнова–Тян-Шанского в 2021 г. (Северная Земля)
- Авторы: Муравьев А.Я.1, Чернов Р.А.1
-
Учреждения:
- Институт географии РАН
- Выпуск: Том 63, № 1 (2023)
- Страницы: 17-32
- Раздел: Ледники и ледниковые покровы
- URL: https://journals.eco-vector.com/2076-6734/article/view/659400
- EDN: https://elibrary.ru/MAINVD
- ID: 659400
Цитировать
Полный текст
Аннотация
Во второй половине августа 2021 г. на острове Большевик (Северная Земля) произошел прорыв ледниково-подпрудного озера Спартаковское. Объём спущенной из озера во фьорд Спартак воды составил около 376 ± 21 млн м3. Озёрная котловина наполнялась водой в 2016–2021 гг. существенно быстрее, чем в 2006–2016 гг. за счёт усиления поверхностной абляции на ледниках водосборного бассейна в условиях аномально теплого лета в 2018–2021 гг. Система “ледяная плотина–озеро” пришла к новому состоянию – сток в долину реки Базовая происходить более не может.
Ключевые слова
Об авторах
А. Я. Муравьев
Институт географии РАН
Автор, ответственный за переписку.
Email: anton-yar@rambler.ru
Россия, Москва
Р. А. Чернов
Институт географии РАН
Email: anton-yar@rambler.ru
Россия, Москва
Список литературы
- World Atlas of Snow and Ice Resources. V. 1. Moscow: Russian Academy of Sciences, 1997: 392 p.
- Barbash V.R., Govorukha L.S., Zotikov I.A. O temperaturnom sostoyanii tolshi kupola Vavilova. About the temperature state of the Vavilov ice cap stratum // Proc. of AARI. 1981, 367: 54–57 [In Russian].
- Bolshiyanov D.U., Makeev V.M. Arkhipelag Severnaya Zemlya. Oledenenie, istoriya razvitiya prirodnoi sredi. Severnaya Zemlya archipelago. Glaciation, history of the natural environment development. St. Petersburg: Hydrometeoizdat, 1995: 214 p. [In Russian].
- Bolshiyanov D.Y., Sokolov V.T., Yozhikov I.S., Bulatov R.K., Rachkova A.N., Fedorov G.B., Paramzin A.S. Conditions of the alimentation and the variability of glaciers of the Severnaya Zemlya Archipelago from observations of 2014–2015. Led i Sneg. Ice and Snow. 2016, 56 (3): 358–368 [In Russian]. https://doi.org/10.15356/2076-6734-2016-3-358-368
- Bryazgin N.N., Unac R.I. Air temperature and precipitation on the northern earth during periods of ablation and accumulation. Geograficheskie i glaytsiologicheskie issledovaniya v polyarnykh stranakh. Geographical and Glaciological Studies in Polar Countries. Leningrad: Hydrometeoizdat, 1988: 70–81 [In Russian].
- Vasilevich I.I., Chernov R.A. Estimation of snow reserves in the watercourseby the georadiolocation method in the Arctic region // Problemy Arktiki i Antarktiki. Arctic and Antarctic Research. 2018, 64 (1): 5–15 [In Russian]. https://doi.org/10.30758/0555-2648-2018-64-1-5-15.
- Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody i rezul’taty geofizicheskikh i distantsionnykh issledovaniy. Water in glaciers. Methods and results of geophysical and remote sensing studies. M.: GEOS, 2014: 528 p. [In Russian].
- Govorukha L.S. Sovremennoe nazemnoe oledenenie sovetskoi Arktiki. Modern ground glaciation of the Soviet Arctic. Leningrad: Hydrometeoizdat, 1989: 256 p. [In Russian].
- Katalog lednikov SSSR. USSR Glacier Inventory. V. 16. Is. 1. Pt. 1. Leningrad: Hydrometeoizdat, 1980: 80 p. [In Russian].
- Krenke A.N., Khodakov V.G. O svyazi poverkhnostnogo tayaniya lednikov s temperaturoi vozdukha. Connection of the surface melting glaciers and air temperature // Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1966, 12: 153–164 [In Russian].
- Chernov R.A., Muraviev A.Ya. Catastrophic outburst-flood of the Spartakovskoye glacier-dammed lake on the Bolshevik Island (Severnaya Zemlya). Kriosfera Zemli. Earth’s Cryosphere. 2020, 24 (4): 58–68. https://doi.org/10.21782/EC2541-9994-2020-4(50-59).
- Chernov R.A., Romashova K.V. Current state of glacial lakes on Svalbard. Kriosfera Zemli. Earth’s Cryosphere. 2022, 26 (1): 36–45 [In Russian]. https://doi.org/10.15372/KZ20220104
- AARI electronic archive of urgent meteorological and aerological observations of the scientific research station“Ice base “Baranov foreland” for 2013–2021. Retrieved from: http://old.aari.ru/main.php?lg=0&id=405. (Last access: 10.06.2022). [In Russian].
- Fan Y., Ke C., Shen X., Xiao Y., Livingstone S.J., Sole A.J. Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet. The Cryosphere Discuss. 2022. [preprint]. https://doi.org/10.5194/tc-2022-122.
- Harrison S., Karge J.S., Hugge C., Reynolds J., Shugar D.H., Betts R.A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshire A., Regmi D., Vilímek V. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere. 2018, 12 (4): 1195–1209. https://doi.org/10.5194/tc-12-1195-2018.
- Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century. Nature. 2021, 592: 726–731. https://doi.org/10.1038/s41586-021-03436-z.
- Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth C., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century – Dataset. 2021б. https://doi.org/10.6096/13.
- Openaltimetry. Retrieved from: https://openaltimetry.org/citation.htm (Last access: 12 September 2022).
- ECMWF Reanalysis v5 (ERA5). Retrieved from: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (Last access: 12 September 2022).
- pgc.umn.ed. Retrieved from: https://www.pgc.umn.edu/data/arcticdem (Last access: 12 September 2022).
- Liang Y., Bi H., Huang H., Lei R., Liang X., Cheng B., Wang Y. Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020. The Cryosphere. 2022, 16 (3): 1107–1123. https://doi.org/10.5194/tc-16-1107-2022.
- Monthly Reanalysis Timeseries from Climate Reanalyzer. Climate Change Institute, University of Maine, USA. Retrieved from. https://climatereanalyzer.org/reanalysis/monthly_tseries/. (Last access: 10.06.2022).
- Nie Y., Qiao L., Jida W., Zhang Y., Sheng Y., Liu S. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology. 2018, 308: 91–106. https://doi.org/10.1016/j.geomorph.2018.02.002.
- Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M.Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. “ArcticDEM”. Harvard Dataverse. 2018. V1. https://doi.org/10.7910/ DVN/OHHUKH
- SENTINEL 2 Data Quality Report. ESA. Ref. S2-PDGS-MPC-DQR. 2022. Is. 71: 53 p. Retrieved from: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report. (Last access: 10.06.2022).
- Smith B., Adusumilli S., Csathó B.M., Felikson D., Fricker H.A., Gardner A., Holschuh N., Lee J., Nilsson J., Paolo F.S., Siegfried M.R., Sutterley T., and the ICESat-2Science Team. 2021. ATLAS/ICESat-2 L3A Land Ice Height,Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ATLAS/ATL06.005.
- Strozzi T., Wiesmann A., Kääb A., Joshi S., Mool P. Glacial lake mapping with very high resolution satellite SAR data // NHESS. 2012, 12 (8): 2487–2498. https://doi.org/10.5194/nhess-12-2487-2012.
Дополнительные файлы
