Изотопные характеристики атмосферных осадков в Приэльбрусье

Обложка

Цитировать

Полный текст

Аннотация

Приведены результаты изучения изотопных характеристик осадков, выпадающих у подножия южного склона Эльбруса, Кавказ. Отбор осадков организован на станции Азау (абс. высота 2300 м) на ежедневной основе. Установлены основные источники осадков для Приэльбрусья с применением метода обратных траекторий движения воздушных масс. Значения δ18О осадков содержат выраженную связь с температурой приземного слоя воздуха: Δδ18О/ΔT = 0.85‰/°С.

Об авторах

Ю. Н. Чижова

Институт геологии рудных месторождений, петрологии, минералогии и геохимии РАН; Институт географии РАН

Автор, ответственный за переписку.
Email: eacentr@yandex.ru
Россия, Москва; Россия, Москва

В. Н. Михаленко

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

С. С. Кутузов

Институт географии РАН

Email: eacentr@yandex.ru
Россия, Москва

К. А. Шукуров

Институт физики атмосферы им. А.М. Обухова РАН

Email: eacentr@yandex.ru
Россия, Москва

А. В. Козачек

Арктический и Антарктический научно-исследовательский институт

Email: eacentr@yandex.ru
Россия, Санкт-Петербург

Список литературы

  1. Vasil’chuk Yu.K., Chizhova Yu.N., Papesh V., Budantseva N.A. Altitude isotope effect in the snow on the Garabashi glacier in the Elbrus region. Kriosfera Zemli. Earth’s Сryosphere. 2005, 9 (4): 72–81 [In Russian].
  2. Kozachek A.V., Ekaykin A.A., Mikhalenko V.N., Lipenkov V.Ya., Kutuzov S.S. Isotopic composition of ice cores obtained on the Western Plateau of Elbrus. Led i Sneg. Ice and snow. 2015, 55 (4): 35–49 [In Russian].
  3. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Kunakhovich M.G., Thompson L.G. Studies of the western glacial plateau of Elbrus: results and prospects. Materialy glyatsiologicheskikh issledovaniy. Data of Glaciological Studies. 2005, 99: 185–190 [In Russian].
  4. Toropov P.A., Mikhalenko V.N., Kutuzov S.S., Morozova P.A., Shestakova A.A. Temperature and radiation regime of glaciers on the slopes of Elbrus during the ablation period over the past 65 years. Led i Sneg. Ice and Snow. 2016, 56 (1): 5–19 [In Russian].
  5. Chizhova Yu.N., Mikhalenko V.N., Vasil’chuk Yu.K., Budantseva N.A., Kozachek A.V., Kutuzov S.S., Lavrentiev I.I. Isotopic composition of oxygen in snow-and-firn thickness on the Eastern peak of Elbrus, the Caucasus. Led i Sneg. Ice and Snow. 2019, 59 (3): 293–305 [In Russian]. https://doi.org/10.15356/2076-6734-2019-3-426
  6. Bohleber P., Erhardt T., Spaulding N., Hoffmann H., Fischer H., Mayewski P. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Climate of the Past. 2018, 14: 21–37. https://doi.org/10.5194/cp-14-21-2018.
  7. Ciais P., Jouzel J. Deuterium and oxygen 18 in precipitation: An isotopic model including mixed cloud processes. Geophys. Research Letters. 1994, 99: 16793–16803.
  8. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16 (4): 436–468.
  9. Draxler R.R., Hess G.D. An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Austral. Meteorol. Magasin. 1998, 47: 295–308.
  10. Gat J. R. Atmospheric water balance – the isotopic perspective. Hydrological Processes. 2000, 14: 1357–1369.
  11. Gat J., Carmi I. Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. Geophys. Research Letters. 1970, 75: 3039–3048. https://doi.org/10.1029/JC075i015p03039.
  12. Jing Z., Yu W., Lewis S., Thompson L.G., Xu J., Zhang J., Xu B., Wu G., Ma Y., Wang Y., Guo R. Inverse altitude effect disputes the theoretical foundation of stable isotope paleoaltimetry. Nature Communication. 2022, 13: 4371. https://doi.org/10.1038/s41467-022-32172-9
  13. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woolen J., Zhu Y., Leetmaa A., Reynolds R. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Society. 1996, 77: 437–471.
  14. Keck L. Climate significance of stable isotope records from Alpine ice cores: Combined Faculties for the Natural Sciences and for Mathematics. Dissertation for the degree of Doctor of Natural Sciences. Heidelberg, 2001. 141 p.
  15. Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., Van den Dool H., Jenne R., Fiorino M. The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation. Bull. Amer. Meteorol. Society. 2001, 82 (2): 247–268.
  16. Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Polyukhov A., Toropov P. The Elbrus (Caucasus, Russia) ice core record – Part 2: History of desert dust deposition. Atmospheric Chemistry and Physics. 2019, 19: 14133–14148. https://doi.org/10.5194/acp-19-14133-2019
  17. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A, Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015, 9: 2253–2270. https://doi.org/10.5194/tc-9-2253-2015.
  18. Pfahl S., Sodemann H. What controls deuterium excess in global precipitation? Climate of the Past. 2014, 10: 771–781. https://doi.org/10.5194/cp-10-771-2014, 2014.
  19. Rozanski K., Arguas-Arguas L., Gonfiantini R. Relation between long-term trends of Oxygen-18 isotope composition of precipitation and climate. Science. 1992, 258 (5084): 981–985. https://doi.org/10.1126/science.258.5084.981
  20. Rozanski K., Johnsen S.J., Schotterer U. Thompson, L.G. Reconstruction of past climates from stable isotope records of palaeo-precipitation preserved in continental archives. Journ. of the Hydrol. Sciences 1997, 42: 725745. https://doi.org/10.1080/02626669709492069
  21. Salmon O.E., Welp L.R., Baldwin M.E., Hajny K.D., Stirm B.H., Shepson P.B. Vertical profile observations of water vapor deuterium excess in the lower troposphere. Atmospheric Chemistry and Physics. 2019, 19: 11525–11543. https://doi.org/10.5194/acp-19-11525-2019, 2019.
  22. Schotterer U., Fröhlich K., Gäggeler H.W., Sandjordj S., Stichler W. Isotope Records from Mongolian and Alpine Ice Cores as Climate Indicators. Climatic Change. 1997, 36: 519–530.
  23. Shukurov K.A., Chkhetiani O.G. Probability of transport of air parcels from the arid lands in the Southern Russia to Moscow region. Proc. SPIE 2017, 10466: 104663V. https://doi.org/10.1117/12.2287932
  24. Sodemann H., Aemisegger F., Pfahl S., Bitter M., Corsmeier U., Feuerle T., Graf P., Hankers R., Hsiao G., Schulz H., Wieser A., Wernli H. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: Insight into vertical mixing processes from lower-tropospheric survey flights. Atmospheric Chemistry and Physics. 2017, 17: 6125–6151. https://doi.org/10.5194/acp-17-6125-2017.
  25. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteorol. Society. 2015, 96: 2059–2077.
  26. Stenni B., Masson-Delmotte V., Selmo E., Oerter H., Meyer H., Röthlisberger R., Jouzel J., Cattani O., Falourd S., Fischer H., Hoffmann G., Iacumin P., Johnsen S., Minster B., Udisti R. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quaternary Science Rev. 2010, 29: 146–159.
  27. Tian L., Yao T., Li Z., MacClune K., Wu G., Xu B. Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. Journ. of Geophys. Research. 2006, 111: D13103. https://doi.org/10.1029/200JD006249
  28. Vasil’chuk Yu., Chizhova Ju., Frolova N., Budantseva N., Kireeva M., Oleynikov A., Tokarev I., Rets E., Vasil’chuk A. A variation of stable isotope composition of snow with altitude on the Elbrus Mountain, Central Caucasus. Geography, Environment, Sustainability. 2020, 13 (1): 172–182. https://doi.org/10.24057/2071-9388-2018-22
  29. Vimeux F., Masson V., Delaygue G., Jouzel J., Petit J.R., Stievenard M. A 420,000 year deuterium excess record from East Antarctica: Information on past changes in the origin of precipitation at Vostok. Journ. of Geophys. Research. 2001, 106 (D23): 31863–31873.
  30. Wallace J., Hobbs P. Atmospheric Science: An Introductory Survey. Academic, San Diego, Calif. 2006, 488.

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.