Climatic characteristics of snow water equivalent in the Perm Krai area

Cover Page

Cite item

Full Text

Abstract

In this study, we compared ERA5-Land reanalysis data on snow water equivalent (SWE) with values of SWE obtained from snow-measuring surveys on 18 field (non-forest) and 17 forest routes in the Perm Territory for 1967–2023 and analyzed the long-term trends of SWE. In general, the ERA5-Land reanalysis reproduces SWE in the Perm region satisfactorily. Mean relative error for SWE in March does not exceed 15%. The average correlation coefficient between the reanalysis data and the same from the observations is 0.72 for non-forest locations and 0.83 for locations in forest. In the southern part of the region, the reanalysis does mainly overestimate SWE by 10–40 mm, while in the north and east of the territory, there is an underestimation of the same order. The greatest divergence between snow surveys and reanalysis are found during snowmelt season, especially for non-forest snow-measuring routes. As it follows the ERA5-Land data, average date of formation of the SWE maximum in the southern part of the region is close to March 25, and in the eastern mountainous part it falls on the second decade of April, which is 4–7 days later than according to snow surveys in the forest. According to the ERA5-Land data and observations, a statistically significant negative trend of SWE was revealed all over the territory in the first half of the cold season, especially pronounced in November. It is related to the autumn warming and a shift of snow cover onset to later dates. In March, the negative trend according to the ERA5 data is statistically significant only in the southern part of the region, where it reaches –12 mm/10 years, but no statistically significant decrease in SWE is found according to the snow survey data. In May, a significant reduction of SWE in the northeast of the region (up to 15 mm/10 years) is found, which is due to the warming in April and May, and an earlier start of snowmelt. A comparison with the snow survey data shows that the reanalysis reproduces well the inter-annual variability of SWE accumulated by March, especially in forest locations. A statistically significant increase in SWE was revealed on five snow measuring routes in field, while a statistically significant decrease – on two forest routes, which is not confirmed by the reanalysis data. These discrepancies may be related to changes in local snow accumulation conditions on snow-measuring routes.

About the authors

N. A. Kalinin

Perm State University

Email: and3131@inbox.ru
Russian Federation, Perm

A. D. Kryuchkov

Perm State University

Email: and3131@inbox.ru
Russian Federation, Perm

I. A. Sidorov

Perm State University

Email: and3131@inbox.ru
Russian Federation, Perm

R. K. Abdullin

Perm State University

Email: and3131@inbox.ru
Russian Federation, Perm

A. N. Shikhov

Perm State University

Author for correspondence.
Email: and3131@inbox.ru
Russian Federation, Perm

References

  1. Belousova A.P., Bryzhko I.V. Analiz zarastaniya sel’skohozyajstvennyh ugodij na territorii Permskogo kraya po sputnikovym snimkam Landsat. InterKarto. InterGIS. Geoinformacionnoe obespechenie ustojchivogo razvitiya territorij: Materialy Mezhdunar. konf. Analysis of overgrowth of agricultural lands in the Perm Territory using Landsat satellite images. The InterCarto. InterGIS. Geoinformation support for sustainable development of territories: Materials of the International Conference. Moscow: Faculty of Geography of Moscow State University, 2021, 27 (4): 150–161. https://doi.org/10.35595/2414-9179-2021-4-27-150-161 [In Russian].
  2. Georgievsky M.V., Khomyakova V.A., Parshina T.V. Accuracy evaluation of snow water equivalent global data: The case of the Northern Dvina River basin. Vestnik SPbGU. Nauki o Zemle. Bulletin of St. Petersburg State University. Earth Sciences. 2020, 65 (3): 434–454. https://doi.org/10.21638/spbu07.2020.302 [In Russian].
  3. Grigorev V.YU., Frolova N.L., Kireeva M.B., Stepanenko V.M. Spatial and temporal variability of ERA5 precipitation accuracy over Russia. Izvestiya RAN. Ser. geogr. Proc. of the RAS. Geographical series. 2022, 86 (3): 435–446. https://doi.org/10.31857/S2587556622030062 [In Russian].
  4. Gusev E.M., Nasonova O.N. Modelirovaniye teplo- i vlagoobmena poverkhnosti sushi s atmosferoy. Modeling of heat and moisture exchange of the land surface with the atmosphere. Moscow: Nauka Publ., 2010: 327 p. [In Russian].
  5. Kazakova E.V. Yezhednevnaya otsenka lokal’nykh znacheniy i ob”yektivnyy analiz kharakteristik snezhnogo pokrova v ramkakh sistemy chislennogo prognoza pogody COSMO-Ru. Daily assessment of local values and objective analysis of snow cover characteristics in the framework of the COSMO-Ru numerical weather forecast system. PhD thesis. Moscow, 2015: 181 p. [In Russian].
  6. Kitaev L.M., Titkova T.B., Turkov D.V. Accuracy of reproduction of interannual variability of snow storages of the East European Plain by satellite data illustrated by the example of the GLOBSNOW (SWE) product. Sovremennyie problemy distancionnogo zondirovaniya Zemli iz kosmosa. Current Problems in Remote Sensing of the Earth from Space. 2020, 17 (1): 164–175. https://doi.org/10.21046/2070-7401-2020-17-1-164-175 [In Russian].
  7. Kitaev L.M., Titkova T.B. Zonal features of changes in snow storage of East European Plain (according to satellite observations). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current Problems in Remote Sensing of the Earth from Space. 2020, 17 (5): 167–178. https://doi.org/10.21046/2070-7401-2020-17-5-167-178
  8. Kryuchkov A.D. Prostranstvenno-vremennoe raspredelenie harakteristik snezhnogo pokrova na territorii Permskogo kraya. Spatial and temporal distribution of snow cover characteristics on the territory of the Perm region. PhD thesis. Perm: Perm State National Research University, 2021: 223 p. Retrieved from: http://www.psu.ru/files/docs/science/dissertat-sionnye-sovety/kryuchkov/disser.pdf [In Russian].
  9. Kryuchkov A.D., Kalinin N.A., Sidorov I.A. Quality of Snow Cover Characteristics Derived from ERA 5-Land Reanalysis for the Territory of Perm Krai. Led i Sneg. Ice and Snow. 2023, 63 (3): 383–396. https://doi.org/10.31857/S2076673423030055 [In Russian].
  10. Kuzmin P.P. Process tayaniya snezhnogo pokrova. The process of melting snow cover. Leningrad: Hydrometeoizdat, 1961: 346 p. [In Russian].
  11. Meteorological monthly guide. Ural’skoe UGMS. Ural UGMS. 1990–2020, 9, 2 (1–5): 10–13 [In Russian].
  12. Motovilov, Yu.G., Gelfan A.N. Modeli formirovaniya stoka v zadachakh gidrologii rechnykh basseynov. Models of runoff formation for the challenges of river basins hydrology. Moscow: Water problem Institute of RAS, 2018: 296 p. [In Russian].
  13. Nastavlenie gidrometeorologicheskim stancijam i postam. Vyp. 3. Ch. 1. Meteorologicheskie nabljudenija na stancijah. Instruction to hydrometeorological stations and posts. V. 3. P. 1. Meteorological observations at the stations. Leningrad: Gidrometeoizdat, 1985: 300 p. [In Russian].
  14. Popova V.V., Morozova P.A., Titkova T.B., Semenov V.A., Cherenkova E.A., Shiryaeva A.V., Kitaev L.M. Regional features of present winter snow accumulation variability in the North Eurasia from data of observations, reanalysis and satellites. Led i Sneg. Ice and Snow. 2015, 55 (4): 73–86. https://doi.org/10.15356/2076-6734-2015-4-73-86 [In Russian].
  15. Prirodnye opasnosti Rossii: V 6 t. T. 5. Gidrometeorologicheskie opasnosti. Natural hazards of Russia: in 6 vol. Vol. 5. Hydrometeorological hazards / Ed. by G.S. Golitsyn, A.A. Vasiliev. Moscow: Kruk Publisher, 2004: 296 p. [In Russian].
  16. Pyankov S.V., Shikhov A.N. Geoinformacionnoe obespechenie modelirovanija gidrologicheskih processov i javlenij. Geo-information support for modeling of hydrological processes and phenomena. Perm: Perm State University, 2017: 148 p.
  17. Sosnovsky A.V., Osokin N.I., Chernyakov G.A. Dinamika snegozapasov na ravninnoj territorii Rossii v lesu i v pole pri klimaticheskih izmenenijah. Dynamics of snow storages in forest and field of Russian plains under climate changes. Led i Sneg. Ice and Snow. 2018, 58 (2): 183–190. https://doi.org/10.15356/2076-6734-2018-2-183-190 [In Russian].
  18. Turkov D.V., Sokratov V.S. Calculation of snow cover characteristics on lowland areas with the use of the SPONSOR model of local heat and moisture exchange and reanalysis data on the example of the Moscow region. Led i Sneg. Ice and Snow. 2016, 56 (3): 369–380. https://doi.org/10.15356/2076-6734-2016-3-369-380
  19. Turkov D.V., Sokratov V.S., Titkova T.B. Evaluation of snow storage in Western Siberia based on the land-surface model SPONSOR simulation using reanalysis data. Led i Sneg. Ice and Snow. 2017, 57 (3): 343–354. https://doi.org/10.15356/2076-6734-2017-3-343-354 [In Russian].
  20. Churyulin E.V. Ispol’zovaniye sputnikovoy i model’noy informatsii o snezhnom pokrove pri raschetakh kharakteristik vesennego polovod’ya. Using satellite-based and simulated snow cover information for calculating spring flood characteristics. PhD thesis. Moscow, 2019: 175 p. [In Russian].
  21. Brown R.D., Brasnett B. Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, Version 1 [Data Set]. Boulder, Colorado, USA: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2010. https://doi.org/10.5067/W9FOYWH0EQZ3.
  22. Copernicus Climate Data Store. Retrieved from: https://cds.climate.copernicus.eu/ Last access: July 15, 2024.
  23. Integrated Forecast System Documentation – Cy45r1. Part IV: Physical Processes. ECMWF, 2018: 223 p. https://doi.org/10.21957/4whwo8jw0
  24. Kelly R.E.J., Foster J.L. Dorothy K.H. The AMSR-E Snow Water Equivalent Product: Status and Future Development. Poster presented at the American Geophysical Union Fall Meeting, San Francisco, CA, 2005.
  25. Kuchment L.S., Romanov Р.Yu., Gelfan А.N., Demidov V.N. Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation. Hydrology and Earth System Science. 2010, 14 (2): 339–350. https://doi.org/10.5194/hess-14-339-2010
  26. Loveland T.R., Reed B.C., Brown J.F., Ohlen D.O., Zhu Z., Youing L. Merchant J.W. Development of a global land cover characteristics database and IGB6 DISCover from the 1 km AVHRR data // International Journ. of Remote Sensing, 2000, 21: 1303–1330. https://doi.org/10.1080/014311600210191
  27. Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D.G., Piles M., Rodríguez-Fernández N.J., Zsoter E., Buontempo C., Thépaut J.N. ERA5-land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 2021, 13 (9): 4349–4383. https://doi.org/0.5194/essd-13-4349-2021
  28. Pyankov S.V., Shikhov A.N., Kalinin N.A., Sviyazov E.M. A GIS-based modeling of snow accumulation and melt processes in the Votkinsk reservoir basin. Journ. of Geographical Sciences, 2018. 28 (2): 221–237. https://doi.org/10.1007/s11442-018-1469-x
  29. Takala M., Luojus K., Pulliainen J., Derksen C., Lemmetyinen J., Kärnä J., Koskinen J. Bojkov B. Estimating Northern Hemisphere Snow Water Equivalent for Climate Research through Assimilation of Space-Borne Radiometer Data and Ground-Based Measurements. Remote Sensing of Environment. 2011, 115: 3517–3529. https://doi.org/10.1016/j.rse.2011.08.014

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.