Метеорологический режим и лавиноопасность зим на Кавказе в конце XXI века на основе результатов моделей CMIP6

Обложка

Цитировать

Полный текст

Аннотация

По прогностическим оценкам лучших для Кавказа моделей земной системы CMIP6 при существенном повышении средней зимней температуры на 4–6 °С (согласно сценарию SSP-5.8.5) частота возникновения экстремальной лавинной опасности практически не меняется (из-за увеличения зимних осадков на 25%). При этом максимум зимних осадков в конце XXI в. смещается на март. По расчётам модели SNOWPACK наиболее типичной ситуацией к концу XXI в. будет формирование однородной снежной толщи с низкой плотностью, либо обводнённого снежного покрова. Эти ситуации не являются лавиноопасными, поэтому в 2071–2100 гг. ожидается существенное снижение повторяемости разрушительных крупных лавин из сухого снега и тенденция к увеличению числа менее опасных лавин из рыхлого и мокрого снега.

Об авторах

И. А. Корнева

Институт географии РАН

Автор, ответственный за переписку.
Email: tormet@inbox.ru
Россия, Москва

А. Д. Олейников

Московский государственный университет имени М.В. Ломоносова

Email: tormet@inbox.ru
Россия, Москва

П. А. Торопов

Институт географии РАН; Московский государственный университет имени М.В. Ломоносова

Email: tormet@inbox.ru
Россия, Москва; Москва

Н. Е. Варенцова

Московский государственный университет имени М.В. Ломоносова

Email: tormet@inbox.ru
Россия, Москва

Н. В. Коваленко

Московский государственный университет имени М.В. Ломоносова

Email: tormet@inbox.ru
Россия, Москва

Список литературы

  1. Blagoveshenskyi V.P. Opredelenie lavinnih nagruzok. Determination of avalanche loads. Alma-Ata: Gylym. 1991: 116 p. [In Russian].
  2. Glazovskaya T.G., Troshkina E.S. The impact of global climate change on the avalanche regime in the former Soviet Union. Materialy glyaciologicheskih issledovanij. Data of Glaciological Studies. 1998, 84: 88–91 [In Russian].
  3. Zhdanov V.V. An experimental method for predicting avalanches based on neural networks. Led i Sneg. Ice and Snow. 2016, 56 (4): 502–510 [In Russian].
  4. Kuksova N.E., Toropov P.A., Oleynikov A.D. Meteorological conditions of extreme avalanche formation in the Caucasus mountains according to observations and reanalysis. Led i Sneg. Ice and Snow. 2021, 61 (3): 377–390 [In Russian].
  5. Oleynikov A.D., Volodicheva N.A., Boyarshinov A.V. Winter snowfall and avalanche activity in the Greater Caucasus during the period of instrumental observations. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 88: 74–83 [In Russian].
  6. Oleynikov A.D., Volodicheva N.A. Extreme winters of the XX–XXI centuries. as indicators f snowfall and avalanche danger in the context of past and projected climate change. Led i Sneg. Ice and Snow. 2012, 3 (119): 52–57 [In Russian].
  7. Oleynikov A.D., Volodicheva N.A. Avalanche maximum winters in the Greater Caucasus during the period of instrumental observations (1968–2016). Led i Sneg. Ice and Snow. 2020, 60 (4): 521–532 [In Russian].
  8. Oleynikov A.D. Areas of maximum intensity of avalanche formation in the Greater Caucasus associated with large anomalies of temperature and humidity regime. Led i Sneg. Ice and Snow. 2024, 64 (2): 221–230 [In Russian].
  9. Semenov V.A. The connection of abnormally cold winter regimes in Russia with a decrease in the area of sea ice in the Barents Sea. Izvestiya Rossiyskoi Akademii Nauk. Fizika atmosferi i okeana. Izvestiya. Atmospheric and Oceanic Physics . 2016, 52 (3): 257–266 [In Russian].
  10. Toropov P.A. Assessment of the quality of reproduction by models of the general atmospheric circulation of the climate of the East European Plain. Meteorologia i Gidrologia. Russian Meteorology and Hydrology. 2005, 5: 5–21 [In Russian].
  11. Aleshina M.A., Semenov V.A., Chernokulsky A.V. A link between surface air temperature and extreme precipitation over Russia from station and reanalysis data. Environmental Research Letters. 2021, 16 (10): 105004.
  12. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I., Semenov V. Observed changes in convective and stratiform precipitation in northern Eurasia over the last five decades. Environmental Research Letters. 2019, 14: 045001.
  13. Christen M., Kowalski J., Bartelt P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology. 2010, 1–2 (63): C. 1–14.
  14. Flato G., Marotzke J., Abiodun B., Braconnot P., Chou S.C., Collins W., Cox P., Driouech F., Emori S., Eyring V., Forest C., Gleckler P., Guilyardi E., Jakob C., Kattsov V., Reason C., Rummukainen M. Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 2013: 741–882. https://doi.org/110.1017/CBO9781107415324.020
  15. Glazovskaya T.G. Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change. Annals of Glaciology. 1998, 26: 337–342.
  16. Glazovskaya T.G., Seliverstov Y.G. Long-term forecasting of changes of snowiness and avalanche activity in the world due to the global warming. Publikasjon – Norges Geotekniske Institutt. 1998, 203: 113–116.
  17. Jia K., Ruan Y., Yang Y., Zhang C. Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau. Water. 2019, 9 (11): 1771.
  18. Lehning M., Fierz C., Lundy C. An objective snow profile comparison method and its application to SNOWPACK. Cold Regions Science and Technology. 2001: 253–261.
  19. Lenderink G., Van Meijgaard E. Increase in hourly precipitation extremes beyond expectations from temperature changes // Nature Geoscience. 2008, 1 (8): 511–514.
  20. Meredith E.P., Semenov V.A., Maraun D., Park W., and Chernokulsky A.V. Crucial role of Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. Nature Geoscience. 2015, 8 (8): 615–619.
  21. Min S.K., Zhang X., Zwiers F.W., Hegerl G.C. Human contribution to more intense precipitation extremes. Nature. 2011, 470 (7334): 378–381.
  22. Ortner G., Michel A., Spieler M.B.A., Christen M., Bühler Y., Bründl M., Bresch D.N. A novel approach for bridging the gap between climate change scenarios and avalanche hazard indication mapping. Cold Regions Science and Technology. 2025, 230: 104355.
  23. Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S., Schlax M.G. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate. 2007, 20 (22): 5473–5496.
  24. Su F., Duan X., Chen D., Xao Z., Cuo L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. Journal of Climate. 2013, 10 (26): 3187–3208.
  25. Taylor K.E., Stouffer R.J., Meehl G.A. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society. 2012, 4 (93): 485–498.
  26. Toropov P.A., Aleshina M.A., and Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. Intern. Journ. of Climatology. 2019, 4703–4720.
  27. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (In press). https://doi.org/10.1017/9781009157896

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.