Characterization of mineral particles in the ice core of the Ushkovsky volcano
- Autores: Khairedinova A.G.1, Vinogradova M.M.1, Vorobyev M.A.1, Kutuzov S.S.2, Chizhova Y.N.1,3, Zakusin S.V.3,4, Mikhalenko V.N.1
-
Afiliações:
- Institute of Geography, Russian Academy of Sciences
- The Ohio State University
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
- Lomonosov Moscow State University
- Edição: Volume 65, Nº 1 (2025)
- Páginas: 164-178
- Seção: Palaeoglaciology
- URL: https://journals.eco-vector.com/2076-6734/article/view/684171
- EDN: https://elibrary.ru/GXYQSY
- ID: 684171
Citar
Texto integral
Resumo
The article presents the investigation of mineral particles from an ice core obtained from Ushkovsky volcano (Kamchatka) in the fall of 2022. The 14-meter-long ice core was studied to identify the causes of mineral dust concentration variability and to determine its sources. Insoluble solid particles, including volcanic ash and mineral dust, were analyzed using stereomicroscopy and X-ray diffraction. Minimum and maximum dust concentration values were 356.4 ppb and 45 969 ppb, respectively, with an average dust mass concentration across all data at 5 099 ppb and a median of 2 784 ppb. The results show a cyclic particle distribution linked to seasonality, with notable concentration peaks likely associated with volcanic activity and the transport of mineral dust from arid regions. It was found that surface melting leads to the leaching of calcium and magnesium ions from layers containing insoluble particles. The displacement of cation peaks relative to dust concentration peaks is variable and likely depends on the meteorological characteristics of individual summer seasons. Mineralogical analysis of the samples shows the presence of plagioclase, as well as clay and ferro-magnesial silicates and amorphous silica. Plagioclase dominates at all depths, indicating a predominance of volcanic ashes in the composition of insoluble impurities. The ratio of non-clay minerals (pyroxenes, amphiboles, and amorphous silica) can be used as markers of local transport, while the presence of clay minerals (smectite, kaolinite, chlorite) is suggested as an indicator of long-range transport. Thus, Kamchatka ice cores can be used to study the processes of mineral particle transport in the atmosphere, provided a comprehensive approach is applied, including mineral composition and chemical composition analyses as well as isotopic methods to determine material origin.
Palavras-chave
Sobre autores
A. Khairedinova
Institute of Geography, Russian Academy of Sciences
Email: m.vorobyev@igras.ru
Rússia, Moscow
M. Vinogradova
Institute of Geography, Russian Academy of Sciences
Email: m.vorobyev@igras.ru
Rússia, Moscow
M. Vorobyev
Institute of Geography, Russian Academy of Sciences
Autor responsável pela correspondência
Email: m.vorobyev@igras.ru
Rússia, Moscow
S. Kutuzov
The Ohio State University
Email: m.vorobyev@igras.ru
School of Earth Sciences
Estados Unidos da América, ColumbusY. Chizhova
Institute of Geography, Russian Academy of Sciences; Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences
Email: m.vorobyev@igras.ru
Rússia, Moscow; Moscow
S. Zakusin
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Email: m.vorobyev@igras.ru
Rússia, Moscow; Moscow
V. Mikhalenko
Institute of Geography, Russian Academy of Sciences
Email: m.vorobyev@igras.ru
Rússia, Moscow
Bibliografia
- Gorbach N.V., Philosofova T.M., Mikhalenko V.N. Identification of tephra horizons in the glacier at the top of the Ushkovsky volcano (Kamchatka) by analyzing the chemical composition of volcanic glass in the ash particles. Led i Sneg. Ice and Snow. 2024, 64 (1): 66–80 [In Russian]. http://doi.org/10.31857/S2076673424010053
- Shevchenko V.P., Lisicin A.P., Vinogradova A.A., Smirnov V.V., Serova V.V., Shtain R. Arctic Aerosols: results of ten years of research // Optika atmosferi i okeana. Optics of the atmosphere and ocean. 2000, 13 (6–7): 551–576 [In Russian].
- de Angelis M., Barkoy N.I., Petrov V.I. Sources of continental dust over Antarctica during the last glacial cycle. Journal of Atmospheric Chemistry. 1992, 14: 233–244. https://doi.org/10.1007/BF00115236
- Barr S.L., Wyld B., McQuaid J.B., Neely III R.R., Murray B.J. Southern Alaska as a source of atmospheric mineral dust and ice-nucleating particles. Science Advances. 2023, 9 (33): 3708. https://doi.org/10.1126/sciadv.adg3708
- Bory A.J.-M., Biscaye P.E., Piotrowski A.M., Steffensen J.P. Regional variability of ice core dust composition and provenance in Greenland – Geochemistry Geophysics Geosystems. 2003, 4 (12): 1107. https://doi.org/10.1029/2003GC000627
- Bullard J.E., Baddock M., Bradwell T., Crusius J., Darlington E., Gaiero D., Gassó S., Gisladottir G., Hodgkins R., McCulloch R., McKenna-Neuman C., Mockford T., Stewart H., Thorsteinsson T. High-latitude dust in the Earth system. Reviews of Geophysics. 2016, 54: 447–485. https://doi.org/10.1002/2016RG000518
- Chizhova Yu.N., Mikhalenko V.N., Korneva I.A., Muravyov Ya.D., Hayredinova A.G., Vorobiev M.A. New data on deuterium excess values of glacial ice in Kamchatka Peninsula. Doklady Earth Sciences. 2024, 517 (2): 1387–1392. https://doi.org/10.1134/S1028334X24602190
- Crusius J., Schroth A.W., Gassó S., Moy C.M., Levy R.C., Gatica M. Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophysical Research Letters. 2011, 38 (6): L06602. https://doi.org/10.1029/2010GL046573
- Doebelin N., Kleeberg R. Profex: A graphical user interface for the Rietveld refinement program BGMN. Journal of Applied Crystallography. 2015, 48: 1573–1580. https://doi.org/10.1107/S1600576715014685
- Eichler A., Schwikowski M., Gäggeler H.W. Meltwater induced relocation of chemical species in Alpine firn. Tellus B. 2001, 53B: 192–203. https://doi.org/10.3402/tellusb.v53i2.16575
- Fischer H., Fundel F., Ruth U., Twarloh B., Wegner A., Udisti R., Becagli S., Castellano E., Morganti A., Severi M., Wolff E., Littot G., Röthlisberger R., Mulvaney R., Hutterli M.A., Kaufmann P., Federer U., Lambert F., Bigler M., Hansson M., Jonsell U., de Angelis M., Boutron C., Siggaard-Anderesen M.-L., Steffensen J.P., Barbante C., Gaspari V., Gabrielli P., Wagenbach D. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth and Planetary Science Letters. 2007, 260 (1–2): 340–354. https://doi.org/10.1016/j.epsl.2007.06.014
- Gow A.J., Williamson T. Volcanic ash in the Antarctic ice sheet and its possible climatic implications. Earth and Planetary Science Letters. 1971, 13 (1): 210–218. https://doi.org/10.1016/0012-821X(71)90126-9
- Jones V., Solomina O. The geography of Kamchatka. Global and Planetary Change. 2015, 134: 3–9. https://doi.org/10.1016/j.gloplacha.2015.06.003
- Kallos G., Papadopoulos A., Katsafados P., Nickovic S. Transatlantic Saharan dust transport: Model simulation and results. Journ. of Geophys. Research: Atmosphere. 2006, 111 (D9): D09204. https://doi.org/10.1029/2005JD006207
- Koffman B.G., Yoder M.F., Methven T., Hanschka L., Sears H.B., Saylor P.L. Wallace K.L. Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential. Global Biogeochemical Cycles. 2021, 35: e2020GB006821. https://doi.org/10.1029/2020GB006821
- Kutuzov S.S., Mikhalenko V.N., Grachev A.M., Ginot P., Lavrentiev I.I., Kozachek A.V., Krupskaya V.V., Ekaykin A.A., Tielidze L.G., Toropov P.A. First geophysical and shallow ice core investigation of the Kazbek plateau glacier, Caucasus Mountains. Environmental Earth Sciences. 2016, 75: 1488. https://doi.org/10.1007/s12665-016-6295-9
- Kutuzov S., Legrand M., Preunkert S., Ginot P., Mikhalenko V., Shukurov K., Poliukhov A., Toropov P. The Elbrus (Caucasus, Russia) ice core record – Part 2: History of desert dust deposition. Atmospheric Chemistry and Physics. 2019, 19: 14133–14148. https://doi.org/10.5194/acp-19-14133-2019
- Lambert F., Delmonte B., Petit J., Bigler M., Kaufmann P.R., Hutterli M.A., Stocker T.F., Ruth U., Steffensen J.P., Maggi V. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature. 2008, 452: 616–619. https://doi.org/10.1038/nature06763
- Legrand M., Mayewski P.A. Glaciochemistry of polar ice cores: A review. Reviews of Geophysics. 1997, 35 (3): 219–243. https://doi.org/10.1029/96RG03527
- Lu W., Zhao W., Balsam W., Lu H., Liu P., Lu Z., Ji J. Iron mineralogy and speciation in clay-sized fractions of Chinese desert sediments. Journal of Geophysical Research – D: Atmospheres. 2017, 122: 13458–13471. https://doi.org/10.1002/2017JD027733
- Matoba S., Ushakov S.V., Shimbori K., Sasaki H., Yamasaki T., Ovshannikov A.A., Manevich A.G., Zhideleeva T.M., Kutuzov S., Muravyev Ya.D., Shiraiwa T. The glaciological expedition to Mount Ichinsky, Kamchatka, Russia. Bulletin of Glaciological Research. 2007, 24: 79–85. Retrieved from: http://hdl.handle.net/2115/20566
- Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Ya.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka. Annals of Glaciology. 2011, 52 (58): 44–50. http://doi.org/10.3189/172756411797252149
- Muhs D.R., Budahn J.R., McGeehin J.P., Bettis III E.A., Skipp G., Paces J.B., Wheeler E.A. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska // Aeolian Research. 2013. V. 11. P. 85–99. https://doi.org/10.1016/j.aeolia.2013.06.001
- Post J.E., Bish D.L. Rietveld refinement of crystal structures using powder X-Ray diffraction data. Reviews in Mineralogy. 1989, 20: 277–308. https://doi.org/10.1515/9781501509018-012
- Preunkert S., Legrand M., Kutuzov S., Ginot P., Mikhalenko V., Friedrich R. The Elbrus (Caucasus, Russia) ice core record – Part 1: reconstruction of past anthropogenic sulfur emissions in south-eastern Europe. Atmospheric Chemistry and Physics. 2019, 19 (22): 14119–14132. https://doi.org/10.5194/acp-19-14119-2019
- Ram M., Donarummo Jr.J., Sheridan M. Volcanic ash from Icelandic ~57 300 Yr BP eruption found in GISP2 (Greenland) Ice Core. Geophysical Research Letters. 1996, 23 (22): 3167–3169. https://doi.org/10.1029/96GL03099
- Ruth U., Wagenbach D., Steffensen J.P., Bigler M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysical Research: Atmosphere. 2003, 108 (D3): 4098. https://doi.org/10.1029/2002JD002376
- Sato T., Shiraiwa T., Greve R., Seddik H., Edelmann E., Zwinger T. Accumulation reconstruction and water isotope analysis for 1735–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records. Climate of the Past. 2013, 9: 2153–2181. https://doi.org/10.5194/cpd-9-2153-2013
- Shiraiwa T., Nishio F., Kameda T., Takahashi A., Toyama Y., Muravyev Ya.D., Ovsyannikov A.A. Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia. Seppyo. 1999, 61 (1): 25–40. https://doi.org/10.5331/seppyo.61.25
- Steffensen J.P., Andersen K.K., Bigler M., Clausen H.B., Dahl-Jensen D., Fischer H., Goto-Azuma K., Hansson M.E., Johnsen S.J., Jouzel J., Masson-Delmotte V., Popp T., Rasmussen S.O., Rothlisberger R., Ruth U., Stauffer B., Siggaard-Andersen M.-L., Sveinbjornsdottir A.E., Svensson A., White J.W.C. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science. 2008, 321 (5889): 680–684. https://doi.org/10.1126/science.1157707
- Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society. 2015, 96 (12): 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1
- Svensson A., Andersen K.K., Bigler M., Clausen H.B., Dahl-Jensen D., Davies S.M., Johnsen S.J., Muscheler R., Parrenin F., Rasmussen S.O., Röthlisberger R., Seierstad I.K., Steffensen J.P., Vinther B.M. A 60 000-year Greenland stratigraphic ice core chronology. Climate of the Past. 2008, 4: 47–57. https://doi.org/10.5194/cp-4-47-2008
- Újvári G., Klötzli U., Stevens T., Svensson A., Ludwig P., Vennemann T., Gier S., Horschinegg M., Palcsu L., Hippler D., Kovács J., Biagio C.Di., Formenti P. Greenland Ice Core Record of Last Glacial Dust Sources and Atmospheric Circulation. Journal of Geophysical Research: Atmosphere. 2022, 127 (15): e2022JD036597. https://doi.org/10.1029/2022JD036597
- Yasunari T.J., Shiraiwa T., Kanamori S., Fuji Yo., Igarashi M., Yamazaki K., Benson C.S., Hondoh T. Intra-annual variations in atmospheric dust and tritium in the North Pacific region detected from an ice core from Mount Wrangell, Alaska. Journal of Geophysical Research: Atmosphere. 2007, 112 (D10): D10208. https://doi.org/10.1029/2006JD008121
- Yasunari T.J., Yamazaki K. Impacts of Asian dust storm associated with the stratosphere-to-troposphere transport in the spring of 2001 and 2002 on dust and tritium variations in Mount Wrangell ice core, Alaska. Atmospheric Environment. 2009, 43 (16): 2582–2590. https://doi.org/10.1016/j.atmosenv.2009.02.025
Arquivos suplementares
