Исследование структуры и химического состава неглубокого ледяного керна вулкана Ушковский

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Камчатка – это второй по размеру в России район оледенения, который подходит для палеореконструкции по ледяным кернам. Различные факторы (вулканическая активность, низкая антропогенная нагрузка и т.д.) формируют уникальную, но в тоже время сложную для интерпретации химическую запись в местных ледниках. В работе определены основные источники химических маркеров и оценено влияние сезонного таяния на их миграцию.

Полный текст

Доступ закрыт

Об авторах

М. А. Воробьев

Институт географии РАН

Автор, ответственный за переписку.
Email: m.vorobyev@igras.ru
Россия, Москва

С. С. Кутузов

Университет штата Огайо

Email: m.vorobyev@igras.ru

Школа наук о Земле

США, Колумбус

М. М. Виноградова

Институт географии РАН

Email: m.vorobyev@igras.ru
Россия, Москва

А. Г. Хайрединова

Институт географии РАН

Email: m.vorobyev@igras.ru
Россия, Москва

Ю. Н. Чижова

Институт географии РАН; Институт геологии рудных месторождений, петрологии, минералогии и геохимии (ИГЕМ) РАН

Email: m.vorobyev@igras.ru
Россия, Москва; Москва

В. Н. Михаленко

Институт географии РАН

Email: m.vorobyev@igras.ru
Россия, Москва

Список литературы

  1. Малик Н.А. Пеплы извержений вулканов Камчатки (2006–2013 гг.): состав, масса и водорастворимый комплекс. Автореф. дис. на соиск. уч. степ. канд.геол.-мин. наук. Петропавловск-Камчатский: Институт вулканологии и сейсмологии Дальневосточного отделения РАН, 2019. 28 с.
  2. Горбач Н.В., Философа Т.М., Михаленко В.Н. Идентификация горизонтов тефры в леднике на вершине вулкана Ушковский (Камчатка) // Лёд и Снег. 2024. Т. 64. № 1. С. 66–80. http://doi.org/10.31857/S2076673424010053.
  3. Примак Т.И. О лесных пожарах в Камчатском крае. Региональные проблемы развития Дальнего Востока России и Арктики: тезисы докладов II Национальной (Всероссийской) научно-практической конференции «Моисеевские чтения», посвященной памяти камчатского ученого Р.С. Моисеева. Петропавловск-Камчатский: Камчатпресс, 2021. С. 71–76. https://doi.org/10.53657/9785961004069_71
  4. Brimblecombe P., Tranter M., Abrahams P.W., Blackwood I., Davies T.D., Vincent C.E. Relocation and preferential elution of acidic solute through the snowpack of a small, remote, high-altitude Scottish catchment // Annals of Glaciology. 1985. V. 7. P. 141–147. https://doi.org/10.3189/S0260305500006066.
  5. Chizhova Yu.N., Mikhalenko V.N., Korneva I.A., Murav-yov Ya.D., Hayredinova A.G., Vorobiev M.A. New data on deuterium excess values of glacial ice in Kamchatka Peninsula // Diklady Earth Sciences. 2024. V. 517. № 2. P. 1387–1392. [preprint]. https://doi.org/10.1134/S1028334X24602190
  6. Davies T.D., Vincent C.E., Brimblecombe P. Preferential elution of strong acids from a Norwegian ice cap // Nature. 1982. V. 300. P. 161–163. https://doi.org/10.1038/300161a0
  7. De Angelis M., Legrand M. Origins and variations of fluoride in Greenland precipitation // Journ. of Geophysical Research. 1994. V. 99. № D1. P. 1157–1172. https://doi.org/10.1029/93JD02660.
  8. Eichler A., Schwikowski M., Gäggeler H.W. Meltwater induced relocation of chemical species in Alpine firn // Tellus B. 2001. V. 53B. P. 192–203. https://doi.org/10.3402/tellusb.v53i2.16575
  9. Eichler A., Tinner W., Brütsch S., Olivier S., Papina T., Schwikowski M. An ice-core based history of Siberian forest fires since AD 1250 // Quaternary Science Reviews. 2011. V. 30. P. 1027–1034. https://doi.org/10.1016/j.quascirev.2011.02.007
  10. Fu P., Kawamura K., Seki O., Izawa Yu., Shiraiwa T., Ashworth K. Historical trends of biogenic SOA tracers in an ice core from Kamchatka Peninsula // Environmental Science & Technology Letters. 2016. V. 3. № 10. P. 351–358. https://doi.org/10.1021/acs.estlett.6b00275
  11. Ginot P., Schotterer U., Stichler W., Goboi M.A., Francou B., Schwikowski M. Influence of the Tungurahua eruption on the ice core records of Chimborazo, Ecuador // The Cryosphere. 2010. V. 4. P. 561–568. https://doi.org/10.5194/tc-4-561-2010
  12. Kawamura K., Izawa Yu., Mochida M., Shiraiwa T. Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia // Geochimica et Cosmochimica Acta. 2012. V. 99. P. 317–329. http://dx.doi.org/10.1016/j.gca.2012.08.006
  13. Kharuk V.I., Ponomarev E.I., Ivanova G.A., Dvinskaya M.L., Coogan S.C.P., Flannigan M.D. Wildfires in the Siberian taiga // Ambio. 2021. V. 50. P. 1953–1974. https://doi.org/10.1007/s13280-020-01490-x
  14. Korneva I.A., Toropov P.A., Muraviev A.Ya., Aleshina M.A. Climatic factors affecting Kamchatka glacier recession // International Journ. of Climatology. 2024. P. 1–25. https://doi.org/10.1002/joc.8328
  15. Legrand M., Wolff E.W. The Cryospheric Archive of the Past Atmosphere: Aerosol and Soluble Gases in Ice Cores // Chapter 14 in Chemistry in the Cryosphere WORLD SCIENTIFIC. 2022. V. 2. P. 687–753. https://doi.org/10.1142/9789811230134_0014
  16. Matoba S., Ushakov S.V., Shimbori K., Sasaki H., Yamasa-ki T., Ovshannikov A.A., Manevich A.G., Zhidele-eva T.M., Kutuzov S., Muravyev Ya.D., Shiraiwa T. The glaciological expedition to Mount Ichinsky, Kamchatka, Russia // Bulletin of Glaciological Research. 2007. V. 24. P. 79–85. http://hdl.handle.net/2115/20566
  17. Matoba S., Shiraiwa T., Tsushima A., Sasaki H., Muravyev Ya.D. Records of sea-ice extent and air temperature at the Sea of Okhotsk from an ice core of Mount Ichinsky, Kamchatka // Annals of Glaciology. 2011. V. 52. № 58. P. 44–50. http://doi.org/10.3189/172756411797252149
  18. Miklalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia // The Cryosphere. 2015. V. 9. P. 2253–2270. https://doi.org/10.5194/tc-9-2253-2015
  19. Mikhalenko V., Kutuzov S., Toropov P., Legrand M., Sokratov S., Chernyakov G., Lavrentiev I., Prerunkert S., Kozachek A., Vorobiev M., Khairedinova A., Lipenkov V. Accumulation rates over the past 260 years archived in Elbrus ice core, Caucasus // Climate of the Past. 2024. V. 20. P. 237–255. https://doi.org/10.5194/cp-20-237-2024
  20. Murav’ev Ya.D., Ovsyannikov A.A., Shiraiwa T. Activity of the Northern Volcano Group According to Drilling Data in the Ushkovsky Crater Glacier, Kamchatka // Journal of Volcanology and Seismology. 2007. V. 1. № 1. P. 42–52. https://doi.org/10.1134/S0742046307010034
  21. Olivier S., Blaser C., Brütsch S., Frolova N., Gäggeler H.W., Henderson K.A., Palmer A.S., Papina T., Schwikow-ski M. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai // Journ. of Geophysical Research. 2006. V. 111. P. D05309. https://doi.org/10.1029/2005JD005830
  22. Pratt K.A., Murphy S.M., Subramanian R., DeMott P.J., Kok G.L., Campos T., Rogers D.C., Prenni A.J., Heymsfield A.J., Seinfeld J.H., Prather K.A. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes // Atmospheric Chemistry and Physics. 2011. V. 11. P. 12549–12565. https://doi.org/10.5194/acp-11-12549-2011
  23. Pohjola V.A., Moore J.C., Isaksson E., Juahiainen T., van de Wal R.S.W., Martma T., Meijer H.A.J., Vaikmäe R. Effect of periodic melting on geochemical and isotopic signals in an ice core from Lomonosovfonna // Journ. of Geophysical Research. 2002. V. 107. № D4. P. 4036–4050. https://doi.org/10.1029/2000JD000149
  24. Sato T., Shiraiwa T., Greve R., Seddik H., Edelmann E., Zwinger T. Accumulation reconstruction and water isotope analysis for 1735–1997 of an ice core from the Ushkovsky volcano, Kamchatka, and their relationships to North Pacific climate records // Climate of the Past. 2013. V. 9. P. 2153–2181. https://doi.org/10.5194/cpd-9-2153-2013
  25. Schwikowski M., Brütsch S., Gäggeler H.W., Schotterer U. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps // Journ. of Geophysical Research. 1999. V. 104. № D11. P. 13709–13719. https://doi.org/10.1029/1998JD100112
  26. Shiraiwa T., Muravyev Ya.D., Yamaguchi S. Stratigraphic Features of Firn as Proxy Climate Signals at the Summit Ice Cap of Usnkovsky Volcano, Kamchatka, Russia // Arctic and Alpine Research. 1997. V. 29. № 4. P. 414–421. https://doi.org/10.1080/00040851.1997.12003262
  27. Shiraiwa T., Nishio F., Kameda T., Takahashi A., Toyama Y., Muravyev Ya.D., Ovsyannikov A.A. Ice core drilling at Ushkovsky ice cap, Kamchatka, Russia // Seppyo. 1999. V. 61. № 1. P. 25–40. https://doi.org/10.5331/seppyo.61.25
  28. Tsiouris S., Vincent C.E., Davies T.D., Brimblecombe P. The elution of ions through field and laboratory snowpacks // Annals of Glaciology. 1985. V. 7. P. 196–201. https://doi.org/10.3189/S0260305500006169
  29. Tsushima A., Matoba S., Shiraiwa T., Okamoto S., Sasaki H., Solie D.J., Yoshikawa K. Reconstruction of recent climate change in Alaska from the Aurora Peak ice core, central Alaska // Climate of the Past. 2015. V. 11. P. 217–226. https://doi.org/10.5194/cp-11-217-2015
  30. Yalcin L., Wake C.P., Kang S., Kreutz K.J., Whitlow S.I. Seasonal and spatial variability in snow chemistry at Eclipse Icefield, Yukon, Canada // Annals of Glaciology. 2006a. V. 43. P. 230–238. https://doi.org/10.3189/172756406781811998
  31. Yalcin L., Wake C.P., Kreutz K.J., Whitlow S.I. A 1000-yr record of forest fire activity from Eclipse Icefield, Yukon, Canada // The Holocene. 2006b. V. 16. № 2. P. 200–209. https://doi.org/10.1191/0959683606hl920rp

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Район исследования (а) и (б), расположение бурового лагеря (в). Место бурения обозначено на карте красной точкой, черные точки – вулканы, пеплы которых были обнаружены в ледяном керне. Фото (б) вершинной части вулк. Ушковский с кратерами Горшкова и Герца – А. А. Абрамова, 19.09.2022

Скачать (489KB)
3. Рис. 2. Схема распила керна. Горизонтальная (а) и фронтальная (б) проекции. Синим цветом обозначены линии распила, красным – анализируемая часть керна

Скачать (54KB)
4. Рис. 3. Распределение плотности вдоль керна и фотографии трех фрагментов керна с различной долей инфильтрационного льда. Голубые области соответствуют участкам инфильтрационного льда, желтые области – рассеянным пепловым горизонтам, серые области – концентрированным пепловым горизонтам, красные вертикальные линии показывают датировку (лето соответствующего года)

Скачать (358KB)
5. Рис. 4. Распределение концентраций всех ионов (ppb) и значений δ18О в ледяном керне (синяя линия). Голубые области соответствуют участкам инфильтрационного льда, желтые области – рассеянным пепловым горизонтам, серые области – концентрированным пепловым горизонтам, красные линии показывают датировку (лето соответствующего года). Значения концентрации (ppb) ионов и элементов Na, K, S (значения пересчитаны для SO42–), Ca и Mg, полученные, соответственно, методом ионной хроматографии (синяя линия) и АЭС-ИСП (оранжевая линия). Для Na+ масштаб был увеличен (обрезан пик 3433 ppb на 7.05 м).

Скачать (658KB)
6. Рис. 5. Дендрограмма (а) и корреляционная матрица (б) для полной химической записи и при исключенном участке с 760 см до 955 см – (в) и (г) соответственно.

Скачать (446KB)
7. Рис. 6. Сравнение содержания основных ионов в ледяном керне вулкана Ушковский с их содержанием в керне ледника Белуха (Eichler et al., 2011) и в снеге с ледяного поля Эклипс (Yalcin et al., 2006а).

Скачать (172KB)


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.