Толщина льда и снежного покрова ледника Иган (Полярный Урал) по данным наземного радиозондирования в 2019 и 2021 гг.

Обложка

Цитировать

Полный текст

Аннотация

В 2019 и 2021 гг. на леднике ИГАН проводились георадарные измерения толщины льда (ВИРЛ-7, 20 МГц) и снежного покрова (Пикор-Лёд, 1600 МГц). Показано, что ледник имеет политермическую структуру, а его толщина достигает 114 м. Выполнена оценка величины и особенностей распределения снежной толщи по площади ледника и прилегающей территории.

Об авторах

И. И. Лаврентьев

Институт географии РАН

Автор, ответственный за переписку.
Email: lavrentiev@igras.ru
Россия, Москва

Г. А. Носенко

Институт географии РАН

Email: lavrentiev@igras.ru
Россия, Москва

А. Ф. Глазовский

Институт географии РАН

Email: lavrentiev@igras.ru
Россия, Москва

А. Н. Шеин

ГКУ ЯНАО “Научный центр изучения Арктики”

Email: lavrentiev@igras.ru
Россия, Салехард

М. Н. Иванов

Московский государственный университет имени М.В. Ломоносова

Email: lavrentiev@igras.ru
Россия, Москва

Я. К. Леопольд

ГКУ ЯНАО “Научный центр изучения Арктики”

Email: lavrentiev@igras.ru
Россия, Салехард

Список литературы

  1. Borovinskiy B.A. Geophysical studies of glaciers in the Polar Urals. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1964, 9: 227–230 [In Russian].
  2. Voloshina A.P. Some results of studies of the mass balance of the Polar Urals glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988. 61: 44–51 [In Russian].
  3. Katalog lednikov SSSR. USSR Glacier Inventory. V. 3. Northern Edge. Is. 3 Ural. Leningrad: Hydrometeoizdat, 1966: 52 p. [In Russian].
  4. Kulnitsky L.M., Gofman P.A., Tokarev M.Y. Mathematical processing of georadar data and RADEXPRO system. Razvedka i okhrana nedr. Exploration and protection of mineral resources. 2001, 3: 6–11 [In Russian].
  5. Macheret Y.Y. Radiozondirovanie lednikov. Radio echo-sounding of glaciers. Moscow: Nauchny Mir, 2006: 392 p. [In Russian].
  6. Macheret Yu.Ya. Primenenie geofizicheskih metodov dlya izucheniya moshchnosti l’da i stroeniya gornyh lednikov. Application of geophysical methods to study ice thickness and structure of mountain glaciers. PhD. Dissertatsiya na soiskaniye uchenoy stepeni kandidata tekhnicheskih nauk. Moscow, Moscow State University, 1974: 174 p. [In Russian].
  7. Nosenko G.A., Muraviev A.Y., Ivanov M.N., Sinitsky A.I., Kobelev V.O., Nikitin S.A. Response of the Polar Urals glaciers to the modern climate changes. Led I Sneg. Ice and Snow. 2020, 60 (1): 42–57 [In Russian]. https://doi.org/10.31857/S2076673420010022
  8. Troitsky L.S., Khodakov V.G., Mikhalev V.I., Guskov A.S., Lebedeva I.M., Adamenko V.N., Zhivkovich L.A. Oledenenie Urala. The glaciation of the Urals. Moscow: Nauka, 1966: 355 p. [In Russian].
  9. Tsvetkov D.G. 10 years of photogeodetic works on the glaciers of the Polar Urals (Experience of land surveying and mapping of small glaciers with the application of topograps of the IGAN and Obruchev glaciers at a scale of 1:5000). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 16: 245–257 [In Russian].
  10. Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Journ. of Glaciology. 2009, 55 (192): 691–700. https://doi.org/10.3189/002214309789470851.
  11. ECMWF ERA5 (0.5 × 0.5 deg): https://climatereanalyzer.org/reanalysis/monthly_tseries. (Last access: 01 June 2022).
  12. Farinotti, D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus, estimate for the ice thickness distribution of all glaciers on Earth. Nature Geosciences. 2019, 12: 168–173. https://doi.org/10.1038/s41561-019-0300-3
  13. Farinotti D. and the ITMIX Consortium. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison experiment. The Cryosphere. 2017, 11: 949–970. https://doi.org/10.5194/tc-11-949-2017.
  14. Fischer M., Huss M., Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere. 2016, 10: 1279–1295. https://doi.org/10.5194/tc-10-1279-2016.
  15. GISS Surface Temperature Analysis (v4)/Station Data: Salekhard (66.5294N, 66.5294E): https://data.giss.nasa.gov/tmp/gistemp/STATIONS/tmp_RSM00023330_14_0_1/station.txt. (Last access: 01 June 2022).
  16. Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming. Climate Dynamic. 1998, 14 (4): 267–274.
  17. Paul F., Rastner P., Azzoni R.S., Diolaiuti G., Fugazza D., Le Bris R., Nemec J., Rabatel A., Ramusovic M., Schwaizer G., Smiraglia C. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Syst. Science Data. 2020, 12: 1805–1821. https://doi.org/10.5194/essd-12-1805-2020.
  18. Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Journ. of Geosciences. 2018, 8 (5): 174–188. https://doi.org/10.3390/geosciences8050174.
  19. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers // Journ. of Glaciology. 2014, 60: 537–552. https://doi.org/10.3189/2014JoG13J176.
  20. Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J.L., Basantes R., Vuille M., Sicart J.‑E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere. 2013, 7: 81–102. https://doi.org/10.5194/tc-7-81-2013.
  21. Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008. Journ. Of Glaciology. 2017, 58 (211): 953–964. https://doi.org/10.3189/2012JoG11J233.
  22. Tielidze L., Nosenko G., Khromova T., Paul F. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020. The Cryosphere. 2022, 16: 489–504. https://doi.org/10.5194/tc-16-489-2022.
  23. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovskiy K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journ. of Glaciology. 2011, 57: 1113–1118. https://doi.org/10.3189/002214311798843430.
  24. Zemp M., Nussbaumer S.U., Gärtner-Roer I., Bannwart J., Paul, F., Hoelzle, M. WGMS 2021. Global Glacier Change Bulletin No. 4 (2018–2019). ISC(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service. Zurich- Switzerland. 2021, 278 p. https://doi.org/10.5904/wgms-fog-2021-05.

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.