The future glacial cycle and its reflection in the glacial cycles of the Late Pleistocene
- Авторлар: Vakulenko N.V.1, Sonechkin D.M.1
-
Мекемелер:
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Шығарылым: Том 65, № 2 (2025)
- Беттер: 315-326
- Бөлім: Palaeoglaciology
- URL: https://journals.eco-vector.com/2076-6734/article/view/688411
- DOI: https://doi.org/10.31857/S2076673425020095
- EDN: https://elibrary.ru/FOKHSX
- ID: 688411
Дәйексөз келтіру
Аннотация
As a result of applying the principle of symmetry and the similarity property to the glacial cycles of the Late Pleistocene, an analogy was found in the climate dynamics of the Milankovich glacial cycles. This made it possible to outline the future glacial cycle, determine its configuration and duration.
Толық мәтін

Авторлар туралы
N. Vakulenko
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: vanava139@yandex.ru
Ресей, Moscow
D. Sonechkin
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: vanava139@yandex.ru
Ресей, Moscow
Әдебиет тізімі
- Bolshakov V.A. Study of parameters of the middle Pleistocene transition by comparison of the isotope-oxygen record LR04 with the orbital-climatic diagram. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2013, 449 (1): 338–341 [In Russian].
- Vakulenko N.V., Sonechkin D.M., Ivashchenko N.N., Kotlyakov V.M. On periods of multiplying bifurcation of early Pleistocene glacial cycles. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2011, 436 (4): 1541–1544 [In Russian].
- Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Significant features of the calendar of the late Pleistocene glacial cycles. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2007, 43 (6): 773–782 [In Russian].
- Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Symmetry of Late Pleistocene glacial cycles in records of the Antarctic Vostok and DOME C stations. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2005, 407 (1): 111–114 [In Russian].
- Vakulenko N.V., Sonechkin D.M., Kotlyakov V.M. Increase in the global climate variability from about 400 ka BP until present. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2014, 456 (5): 600–603. https://doi.org/10.7868/S0869565214170277 [In Russian].
- Barth A.M., Clark P.U., Bill N.S., He F., Pisias N.G. Climate evolution across the Mid-Brunhes Transition. Climate of the Past. 2018, 14: 2071–2087. https://doi.org/10.5194/cp-14-2071-2018
- Berger W.H., Wefer G. On the dynamics of the ice ages: stage-11 paradox, mid-Brunhes climate shift, and 100-kyr cycle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. 2003, 137: 41–59. https://doi.org/10.1029/137GM04
- Crucifix M., Loutre F., Berger A. The Climate Response to the Astronomical Forcing. Space Science Reviews. 2007, 125 (1–4): 213–226. https://doi.org/10.1007/978-0-387-48341-2_17
- Hobart B., Lisiecki L.E., Rand D., Lee T., Lawrence C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation. Nature Geoscience. 2023, 16: 717–722. https://doi.org/10.1038/s41561-023-01235-x
- Imbrie J., Imbrie J.Z. Modelling the climatic response to orbital variations. Science. 1980, 207: 943–953.
- Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On bifurcations inducing glacial cycle lengthening during pliocene/pleistocene epoch. International Journ. of Bifurcation and Chaos. 2014, 24 (8): 1440018. https://doi.org/10.1142/S0218127414400185
- Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On the nature of the Pliocene/Pleistocene glacial cycle lengthening. Global Perspectives on Geography. 2013, 1: 9–20.
- Kawamura K., Aoki S., Nakazawa T., Abe-Ouchi A., Saito F. Timing and duration of the last five interglacial periods from an accurate age model of the Dome Fuji Antarctic ice core. American Geophysical Union, Fall Meeting. 2010: PP43D-04.
- Laskar J., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics. 2004, 428: 261–285.
- Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic records. Paleoceanology. 2005, 20: PA1003. https://doi.org/10.1029/2004PA001071
- Loutre M.F., Berger A. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change. 2003, 36 (3): 209–217. https://doi.org/10.1016/S0921-8181(02)00186-8
- McManus J.F., Oppo D.W., Cullen J.L. Marine isotope stage 11 (MIS 11): analog for Holocene and future climate? In: A.W. Droxler, R.Z. Poore, L.H. Burckle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11. Question. 2003, 137: 69–85.
- Rial J.A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science. 1999, 285: 564–568.
- Snyder C. Evolution of global temperature over the past two million years. Nature. 2016, 38: 226–228. https://doi.org/10.1038/nature19798
- Talento S., Ganopolski A. Reduced-complexity model for the impact of anthropogenic emissions on future glacial cycles. Earth System Dynamics. 2021, 12: 1275–1293. https://doi.org/10.5194/esd-12-1275-2021
- Tzedakis P.C., Channell J.E.T., Hodell D.A., Kleiven H.F., Skinne L.C. Determining the natural length of the current interglacial. Nature Geoscience. Letters. 2012a, 5 (2): 138–141. https://doi.org/10.1038/NGEO1358
- Tzedakis P.C., Crucifix M., Mitsui T., Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials. Nature. 2017, 542 (7642): 427–432. https://doi.org/10.1038/nature21364
- Tzedakis P.C., Hodell D.A., Nehrbass-Ahles С., Mitsui T., Wolff E.W. Marine Isotope Stage 11c: An unusual. Quaternary Science Reviews. 2022, 284: 107493. https://doi.org/10.1016/j.quascirev.2022.107493
- Tzedakis P.C. The MIS 11 – MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis”. Climate of the Past. 2010, 6: 131–144. https://doi.org/10.5194/cp-6-131-2010
- Tzedakis P.C., Wolff E.W., Skinner L.C., Brovkin V., Hodell D.A., McManus J.F., Raynaud D. Can we predict the duration of an interglacial? Climate of the Past. 2012b, 8: 1473–1485. https://doi.org/10.5194/cp-8-1473-2012
- Tziperman E., Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography. 2003, 18 (1): 1001. https://doi.org/10.1029/2001PA000627
- Tziperman E., Raymo M.E., Huybers P., Wunsch C. Consequences of pacing the Pleistocene 100-kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography. 2006, 21: PA4206. https://doi.org/10.1029/2005PA001241
- Witkowski C.R., von der Heydt A.S., Valdes P.J., van der Meer M.T.J., Schouten S., Sinninghe Damsté J.S. Continuous sterane and phytane record reveals a substantial decline since the mid-Miocene. Nature Communications. 2024, 15 (1): 5192. https://doi.org/10.1038/s41467-024-47676-9
Қосымша файлдар
Қосымша файлдар
Әрекет
1.
JATS XML
2.
Fig. 1. The LR04 time series of variations in the δ18O content in oceanic sediments of benthic foraminifera over the last 900 kyr is divided into two parts of 450 kyr (а–б). Two similar intervals with a length of 120 kyr and one interval with a length of 60 kyr years are shown (gray rectangles); the numbers (kyr) indicate the maxima of interglacial periods; the corresponding marine isotopic stages are indicated in brackets (Tzedakis et al., 2017); the vertical black dotted lines drawn through the main interglacial maxima separate the 9 glacial cycles, indicated by Roman numerals. The Y-axis is inverted
Жүктеу (258KB)
3.
Fig. 2. Comparison of glacial cycles before and after reflection relative to the time point 405 ka; a gray rectangle marks the time interval for reflection. The Y-axis is inverted. Nine glacial cycles from IX to I (а); variations of orbital parameters (Laskar et al., 2004): eccentricity and precession parameter (б), obliquity parameter (в)
Жүктеу (359KB)
4.
Fig. 3. Comparison of three pairs of glacial cycles according to the δ18O data of the LR04 chronology. A vertical dotted line is drawn through the maxima of the common interglacial periods of each pair of glacial cycles. Roman numerals indicate the numbers of glacial cycles from the present time. The Y-axis is inverted. The gray rectangle marks the temporal interval 0±60 kyr. The black lines depict pairs of glacial cycle I–0, V–IV, IX–VIII, in the left halves of the graphs, the I, V and IX glacial cycles are depicted in gray, respectively (а, б, в). The arrows point to the IV glacial cycle (black line) superimposed on the future (0) glacial cycle (а)
Жүктеу (286KB)
5.
Fig. 4. Comparison of two pairs of glacial cycles I–0 and V–IV of the LR04 chronology. The vertical black line is drawn through the main maxima of the interglacial periods of glacial cycles IV and 0 – 405 ka and 2 ka, respectively; the Y-axis is inverted; the curly brackets indicate the scales of the reconstruction, the horizontal dotted lines in the wavelet transform amplitude patterns are drawn through the wavelet scales of 23 and 41 kyr. Glacial cycles I–0 (−119–0–123 ka) and their complex reconstruction, obtained using the inverse wavelet transform in the scale range from 16 to 64 kyr, the real component of the reconstruction is a black line, the imaginary component is gray (а); the amplitude pattern of the wavelet transform using the Morlet wavelet function; the areas of increased amplitude values are blackened (б); the same as (а–б), but for V–IV glacial cycles (491–329 ka) (в–г)
Жүктеу (495KB)
6.
Fig. 5. Phase trajectories of climate dynamics for V–IV glacial cycles (above) and for the last and future (I–0) glacial cycles (below), obtained from components of the complex reconstruction of δ18O content variations in the LR04 series in the range of wavelet scales from 16 to 64 kyr
Жүктеу (347KB)
