The future glacial cycle and its reflection in the glacial cycles of the Late Pleistocene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

As a result of applying the principle of symmetry and the similarity property to the glacial cycles of the Late Pleistocene, an analogy was found in the climate dynamics of the Milankovich glacial cycles. This made it possible to outline the future glacial cycle, determine its configuration and duration.

Full Text

Restricted Access

About the authors

N. V. Vakulenko

Shirshov Institute оf Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: vanava139@yandex.ru
Russian Federation, Moscow

D. M. Sonechkin

Shirshov Institute оf Oceanology, Russian Academy of Sciences

Email: vanava139@yandex.ru
Russian Federation, Moscow

References

  1. Bolshakov V.A. Study of parameters of the middle Pleistocene transition by comparison of the isotope-oxygen record LR04 with the orbital-climatic diagram. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2013, 449 (1): 338–341 [In Russian].
  2. Vakulenko N.V., Sonechkin D.M., Ivashchenko N.N., Kotlyakov V.M. On periods of multiplying bifurcation of early Pleistocene glacial cycles. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2011, 436 (4): 1541–1544 [In Russian].
  3. Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Significant features of the calendar of the late Pleistocene glacial cycles. Izvestiya RAN. Fizika atmosfery i okeana. Proc. of the RAS. Physics of the atmosphere and ocean. 2007, 43 (6): 773–782 [In Russian].
  4. Vakulenko N.V., Kotlyakov V.M., Monin A.S., Sonechkin D.M. Symmetry of Late Pleistocene glacial cycles in records of the Antarctic Vostok and DOME C stations. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2005, 407 (1): 111–114 [In Russian].
  5. Vakulenko N.V., Sonechkin D.M., Kotlyakov V.M. Increase in the global climate variability from about 400 ka BP until present. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2014, 456 (5): 600–603. https://doi.org/10.7868/S0869565214170277 [In Russian].
  6. Barth A.M., Clark P.U., Bill N.S., He F., Pisias N.G. Climate evolution across the Mid-Brunhes Transition. Climate of the Past. 2018, 14: 2071–2087. https://doi.org/10.5194/cp-14-2071-2018
  7. Berger W.H., Wefer G. On the dynamics of the ice ages: stage-11 paradox, mid-Brunhes climate shift, and 100-kyr cycle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11 Question. 2003, 137: 41–59. https://doi.org/10.1029/137GM04
  8. Crucifix M., Loutre F., Berger A. The Climate Response to the Astronomical Forcing. Space Science Reviews. 2007, 125 (1–4): 213–226. https://doi.org/10.1007/978-0-387-48341-2_17
  9. Hobart B., Lisiecki L.E., Rand D., Lee T., Lawrence C.E. Late Pleistocene 100-kyr glacial cycles paced by precession forcing of summer insolation. Nature Geoscience. 2023, 16: 717–722. https://doi.org/10.1038/s41561-023-01235-x
  10. Imbrie J., Imbrie J.Z. Modelling the climatic response to orbital variations. Science. 1980, 207: 943–953.
  11. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On bifurcations inducing glacial cycle lengthening during pliocene/pleistocene epoch. International Journ. of Bifurcation and Chaos. 2014, 24 (8): 1440018. https://doi.org/10.1142/S0218127414400185
  12. Ivashchenko N.N., Kotlyakov V.M., Sonechkin D.M., Vakulenko N.V. On the nature of the Pliocene/Pleistocene glacial cycle lengthening. Global Perspectives on Geography. 2013, 1: 9–20.
  13. Kawamura K., Aoki S., Nakazawa T., Abe-Ouchi A., Saito F. Timing and duration of the last five interglacial periods from an accurate age model of the Dome Fuji Antarctic ice core. American Geophysical Union, Fall Meeting. 2010: PP43D-04.
  14. Laskar J., Joutel F., Gastineau M., Correia A.C.M., Levrard B. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics. 2004, 428: 261–285.
  15. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed bentic δ18O records. Paleoceanology. 2005, 20: PA1003. https://doi.org/10.1029/2004PA001071
  16. Loutre M.F., Berger A. Marine Isotope Stage 11 as an analogue for the present interglacial. Global and Planetary Change. 2003, 36 (3): 209–217. https://doi.org/10.1016/S0921-8181(02)00186-8
  17. McManus J.F., Oppo D.W., Cullen J.L. Marine isotope stage 11 (MIS 11): analog for Holocene and future climate? In: A.W. Droxler, R.Z. Poore, L.H. Burckle. Earth’s Climate and Orbital Eccentricity: the Marine Isotope Stage 11. Question. 2003, 137: 69–85.
  18. Rial J.A. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science. 1999, 285: 564–568.
  19. Snyder C. Evolution of global temperature over the past two million years. Nature. 2016, 38: 226–228. https://doi.org/10.1038/nature19798
  20. Talento S., Ganopolski A. Reduced-complexity model for the impact of anthropogenic CO2 emissions on future glacial cycles. Earth System Dynamics. 2021, 12: 1275–1293. https://doi.org/10.5194/esd-12-1275-2021
  21. Tzedakis P.C., Channell J.E.T., Hodell D.A., Kleiven H.F., Skinne L.C. Determining the natural length of the current interglacial. Nature Geoscience. Letters. 2012a, 5 (2): 138–141. https://doi.org/10.1038/NGEO1358
  22. Tzedakis P.C., Crucifix M., Mitsui T., Wolff E.W. A simple rule to determine which insolation cycles lead to interglacials. Nature. 2017, 542 (7642): 427–432. https://doi.org/10.1038/nature21364
  23. Tzedakis P.C., Hodell D.A., Nehrbass-Ahles С., Mitsui T., Wolff E.W. Marine Isotope Stage 11c: An unusual. Quaternary Science Reviews. 2022, 284: 107493. https://doi.org/10.1016/j.quascirev.2022.107493
  24. Tzedakis P.C. The MIS 11 – MIS 1 analogy, southern European vegetation, atmospheric methane and the “early anthropogenic hypothesis”. Climate of the Past. 2010, 6: 131–144. https://doi.org/10.5194/cp-6-131-2010
  25. Tzedakis P.C., Wolff E.W., Skinner L.C., Brovkin V., Hodell D.A., McManus J.F., Raynaud D. Can we predict the duration of an interglacial? Climate of the Past. 2012b, 8: 1473–1485. https://doi.org/10.5194/cp-8-1473-2012
  26. Tziperman E., Gildor H. On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography. 2003, 18 (1): 1001. https://doi.org/10.1029/2001PA000627
  27. Tziperman E., Raymo M.E., Huybers P., Wunsch C. Consequences of pacing the Pleistocene 100-kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography. 2006, 21: PA4206. https://doi.org/10.1029/2005PA001241
  28. Witkowski C.R., von der Heydt A.S., Valdes P.J., van der Meer M.T.J., Schouten S., Sinninghe Damsté J.S. Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene. Nature Communications. 2024, 15 (1): 5192. https://doi.org/10.1038/s41467-024-47676-9

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The LR04 time series of variations in the δ18O content in oceanic sediments of benthic foraminifera over the last 900 kyr is divided into two parts of 450 kyr (а–б). Two similar intervals with a length of 120 kyr and one interval with a length of 60 kyr years are shown (gray rectangles); the numbers (kyr) indicate the maxima of interglacial periods; the corresponding marine isotopic stages are indicated in brackets (Tzedakis et al., 2017); the vertical black dotted lines drawn through the main interglacial maxima separate the 9 glacial cycles, indicated by Roman numerals. The Y-axis is inverted

Download (258KB)
3. Fig. 2. Comparison of glacial cycles before and after reflection relative to the time point 405 ka; a gray rectangle marks the time interval for reflection. The Y-axis is inverted. Nine glacial cycles from IX to I (а); variations of orbital parameters (Laskar et al., 2004): eccentricity and precession parameter (б), obliquity parameter (в)

Download (359KB)
4. Fig. 3. Comparison of three pairs of glacial cycles according to the δ18O data of the LR04 chronology. A vertical dotted line is drawn through the maxima of the common interglacial periods of each pair of glacial cycles. Roman numerals indicate the numbers of glacial cycles from the present time. The Y-axis is inverted. The gray rectangle marks the temporal interval 0±60 kyr. The black lines depict pairs of glacial cycle I–0, V–IV, IX–VIII, in the left halves of the graphs, the I, V and IX glacial cycles are depicted in gray, respectively (а, б, в). The arrows point to the IV glacial cycle (black line) superimposed on the future (0) glacial cycle (а)

Download (286KB)
5. Fig. 4. Comparison of two pairs of glacial cycles I–0 and V–IV of the LR04 chronology. The vertical black line is drawn through the main maxima of the interglacial periods of glacial cycles IV and 0 – 405 ka and 2 ka, respectively; the Y-axis is inverted; the curly brackets indicate the scales of the reconstruction, the horizontal dotted lines in the wavelet transform amplitude patterns are drawn through the wavelet scales of 23 and 41 kyr. Glacial cycles I–0 (−119–0–123 ka) and their complex reconstruction, obtained using the inverse wavelet transform in the scale range from 16 to 64 kyr, the real component of the reconstruction is a black line, the imaginary component is gray (а); the amplitude pattern of the wavelet transform using the Morlet wavelet function; the areas of increased amplitude values are blackened (б); the same as (а–б), but for V–IV glacial cycles (491–329 ka) (в–г)

Download (495KB)
6. Fig. 5. Phase trajectories of climate dynamics for V–IV glacial cycles (above) and for the last and future (I–0) glacial cycles (below), obtained from components of the complex reconstruction of δ18O content variations in the LR04 series in the range of wavelet scales from 16 to 64 kyr

Download (347KB)


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.