Условия на ложе и поверхности ледникового купола Вавилова (Северная Земля) во время его подвижки по данным аэрорадиозондирования

Обложка

Цитировать

Полный текст

Аннотация

По данным измерений времени запаздывания и амплитуд радиоотражений от ложа ледникового купола Вавилова, полученным в период быстрой подвижки его западной части, определены значения коэффициента отражения от ложа по мощности, которые коррелируют с высокими скоростями (более 1000 м/год) движения ледника в области, наступившей на участок мелководья.

Об авторах

А. Ф. Глазовский

Институт географии РАН

Автор, ответственный за переписку.
Email: glazovsky@igras.ru
Россия, Москва

Н. А. Кабанов

Московский государственный университет имени М.В. Ломоносова

Email: glazovsky@igras.ru
Россия, Москва

Ю. Я. Мачерет

Институт географии РАН

Email: glazovsky@igras.ru
Россия, Москва

А. М. Солдатенко

Московский государственный университет имени М.В. Ломоносова

Email: glazovsky@igras.ru
Россия, Москва

Список литературы

  1. Bushueva I.S., Glazovsky A.F., Nosenko G.A. Surge development in the western sector of the Vavilov Ice Cap, Severnaya Zemlya, 1963–2017. Led i Sneg. Ice and Snow. 2018, 58 (3): 293–306 [In Russian]. https://doi.org/10.15356/2076-6734-2018-3-293-306
  2. Kulnitsky L.M., Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data and RADEXPRO system. Razvedka i okhrana nedr. Prospect and Protection of mineral resources. 2001, 3: 6–11 [In Russian]
  3. Macheret Yu.Ya., Glazovsky A.F., Vasilenko E.V., Lavrentiev I.I., Matskovsky V.V. Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-echo sounding data. Led i Sneg. Ice and Snow. 2021, 61 (2): 165–178 [In Russian]. https://doi.org/10.31857/S2076673421020079
  4. Sochnev O.Ya., Kornishin K.A., Tarasov P.A., Sal’man A.L., Glazovsky A.F., Lavrentiev I.I., Efimov Ya.O., Mamedov T.Ye. Study of glaciers in Russian Arctic for providing of iceberg safety of work on sea shelf. Neftianoe hoziaystvo. Oil Economy 2018, 10: 92–97 [In Russian]. https://doi.org/10.24887/0028-2448-2018-10-92-97
  5. Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses deduced from airborne radio echo-sounding data. Journ. of Glaciology. 1989, 35 (119): 30–37. https://doi.org/10.3189/002214389793701392
  6. Bentley C.R., Lord N., Liu C. Radar reflections reveal a wet bed beneath stagnant Ice Stream C and a frozen bed beneath ridge BC, West Antarctica. Journ. of Glaciology. 1998, 44 (146): 149–155. https://doi.org/10.3189/S0022143000002434
  7. Cacitua G., Urde J.A., Wiilson R., Leriaux T., Hernandez J., Rivera A. 50 MHz helicopter-borne data for determination of glacier thermal regime in the central Chilean Ands. Annals of Glaciology. 2015, 56 (70): 193–201. https://doi.org/10.3189/2015Ao670A953
  8. Chu W., Schroeder D.M., Seroussi H., Creyts T.T., Pal-mer S.J., Bell R.E. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophysical Research Letters. 2016, 43 (24): 12484–12492. https://doi.org/10.1002/2016GL071538
  9. Chu W., Hilger A.M., Culberg R., Schroeder D.M., Jordan T.M., Seroussi H., Young D.A., Blankenship D.D., Vaughan D.G. Multi-System Synthesis of Radar Sounding Observations of the Amundsen Sea Sector from the 2004–2005 Field Season. Journ. of Geophysical Research Earth Surface. 2021, 126: e2021JF006296. https://doi.org/10.1029/2021JF006296
  10. Chu W., Schroeder D.M., Seroussi H., Creyts T.T., Pal-mer S.J., Bell R.E. Extensive winter subglacial water storage beneath the Greenland Ice Sheet. Geophysical Research Letters. 2018, 123: 985–995. https://doi.org/10.1029/2017JF004561
  11. Daniels D.J. (ed.) Ground Penetrating Radar. 2nd Edition. The institution of electrical engineers. 2004: 723 p.
  12. Dowdeswell J.A., Gorman M.R., Glazovsky A., Macheret Yu.Ya. Airborne radio-echo sounding of the ice caps on Franz Josef Land in 1994. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1996, 80: 248–255.
  13. Fujita S., Holmlund P., Matsuoka K., Enomoto H. Fukui K., Nakazawa F., Sugiyama S., Surdyk S. Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. The Cryosphere. 2012, 6: 1203–1219. https://doi.org/10.5194/tc-6-1203-2012
  14. MacGregor J.A., Li J., Paden J.D., Catania G.A., Clow G.D., Fahnestock M.A., Gogineni S.P., Grimm R.E., Morlighem M., Nandi S., Seroussi H., Stillman D.E. Radar attenuation and temperature within the Greenland Ice Sheet. Journ. Geophys. Res. Earth Surf. 2015, 120: 983–1008. https://doi.org/10.1002/2014JF003418
  15. Modified Copernicus Sentinel data/Sentinel Hub. 2014. Retrieved from: https://apps.sentinel-hub.com/eo-browser , Sinergise Ltd. (Last access: 26 January 2022)
  16. Pettersson R., Christoffersen P., Dowdeswell J.A., Pohjola V., Hubbar A. Strozz T. Ice thickness and basal conditions of Vestfonna Ice Cap, Eastern Svalbard. Geografiska Annaler Series A Physical Geography. 2011. 93: 311–322. https://doi.org/10.1111/j.1468-0459.2011.00438.x
  17. Rutishauser A., Blankenship D.D., Young D.A., Wolfenbarger N.S., Beem L.H., Skidmore M.L., Dubnick A., Criscitiell A.S. Radar sounding survey over Devon Ice Cap indicates the potential for a diverse hypersaline subglacial hydrological environment. The Cryosphere. 2022, 16: 379–395. https://doi.org/10.5194/tc-16-379-2022
  18. Schlegel R., Murray T., Smith A.M., Brisbourne A.M., Booth A.D., King E.C., Clark R.A. Radar derived subglacial properties and landforms beneath Rutford Ice Stream, West Antarctica. Journ. of Geophysical Research Earth Surface, 2022, 127: e2021JF006349. https://doi.org/10.1029/2021JF006349/
  19. Tulaczyk S.M., Foley N.T. The role of electrical conductivity in radar wave reflection from glacier beds. The Cryosphere. 2020, 14: 4495–4506. https://doi.org/10.5194/tc-14-4495-2020
  20. Van Wyk de Vries M., Wickert A.D. Glacier Image Velocimetry: an open-source toolbox for easy and rapid calculation of high-resolution glacier velocity fields. The Cryosphere. 2021, 15: 2115–2132. https://doi.org/10.5194/tc-15-2115-2021
  21. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovsky K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journ. of Glaciology. 2011, 57 (206): 1113–1118. https://doi.org/10.3189/002214311798843430
  22. Willis M.J., Zheng W., Durkin IV W.J., Pritchard M.E., Ramage J.M., Dowdeswell J.A., Benham T.J., Bassford R.P., Stearns L.A., Glazovsky A.F., Macheret Y.Y., Porter C.C. Massive destabilization of an Arctic ice cap. Earth and Planetary Science Letters. 2018, 502: 146–155. https://doi.org/10.1016/j.epsl.2018.08.049
  23. Zheng W., Pritchard M.E., Willis M.J., Stearns L.A. The possible transition from glacial surge to ice stream on Vavilov Ice Cap // Geophysical Research Letters. 2019, 46: 13892–13902. https://doi.org/10.1029/2019GL084948

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.