Термический режим снежного покрова зимой в высокогорной части Эльбруса по натурным данным и результатам моделирования

Обложка

Цитировать

Полный текст

Аннотация

На основе данных наблюдений на леднике Гарабаши на юго-восточном склоне Эльбруса в феврале 2021/22 г. проведена верификация LSM SPONSOR для условий периода аккумуляции. Показано, что при значении коэффициента серости 0.98 ошибка моделирования радиационной температуры снежной поверхности не превышает 1°С. Кроме того, модель адекватно воспроизводит термический режим глубоких слоев снежного покрова. Показано, что методическая проблема измерений термического режима в нарушенном снежном покрове может приводить к существенным ошибкам измерения температуры снега. Сравнение результатов моделирования с прямыми измерениями потоков явного тепла по методу eddy covariance показало их хорошее соответствие (коэффициент корреляции более 0.9), хотя для случаев температурной инверсии в приземном слое отмечается систематическое завышение моделью абсолютных значений потоков. На основе данных измерений выявлен факт достаточно высокой повторяемости высоких значений турбулентных потоков в условиях интенсивного радиационного прогрева в сочетании с высокими скоростями ветра, что по всей видимости оказывается типичным для высокогорных районов в зимнее время.

Об авторах

Е. Д. Дроздов

Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: drozdov.jeka@yandex.ru
Россия, Москва

Д. В. Турков

Институт географии РАН

Email: drozdov.jeka@yandex.ru
Россия, Москва

П. А. Торопов

Московский государственный университет имени М.В. Ломоносова; Институт географии РАН

Email: drozdov.jeka@yandex.ru
Россия, Москва; Россия, Москва

А. Ю. Артамонов

Институт физики атмосферы им. А.М. Обухова РАН

Email: drozdov.jeka@yandex.ru
Россия, Москва

Список литературы

  1. Voloshina A.P. Meteorology of mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2001, 92: 3–148 p. [In Russian].
  2. Gandin L.S., Kagan R.L. Statisticheskie metody interpretatsii meteorologicheskich dannyh. Statistical methods for interpreting meteorological data. Leningrad: Hydrometeoizdat, 1976: 360 p. [In Russian].
  3. Gusev E.M., Nasonova O.N., Dzogan L.Ya., Ayzel G.V. Modeling the formation of river runoff and snow cover in the north of the largest Siberia. Vodnye Resursy. Water Resources. 2015, 42 (4): 387–395. [In Russian].
  4. Drozdov E.D., Toropov P.A., Turkov D.V., Shestakova A.A., Androsova E.E. Estimation of the effect of sublimation of ice crystals during snowstorms over the surface of a mountain glacier based on field data and numerical simulation. Sovremennye tendentsii i perspektivy razvitiya gidrometeorologii v Rossii: Materialy IV Vserossiyskoy nauchno-prakticheskoy konferentsii, priurochennoy k Godu nauki I technologiy. Modern trends and prospects for the development of hydrometeorology in Russia: Proceedings of the IV All-Russian Scientific and Practical Conference dedicated to the Year of Science and Technology. Irkutsk: Irkutsk State University Publishing House, 2021: 397–404. [In Russian].
  5. Dyunin A.K. Mekhanika meteley. Blizzard mechanics. Novosibirsk: Siberian Branch of the Academy of Sciences of the USSR, 1963: 378 p. [In Russian].
  6. Russia glacier inventory. Retrieved from: https://www.glacrus.ru (Last access: 04.06.2022). [In Russian].
  7. Ledniki i klimat Elbrusa. Glaciers and climate of Elbrus. Мoscow, Saint Petersburg: Nestor–Istoria, 2020: 372 p. [In Russian].
  8. Oledenenie Elbrusa. Elbrus glaciation. Moscow: Moscow University Press, 1968: 345p. [In Russian].
  9. Osokin N.I., Sosnovskiy A.V., Chernov R.A. Thermal conductivity of snow and its variability. Kriosfera Zemli. Cryosphere of the Earth. 2017, XXI (3): 60–68. https://doi.org/10.21782/KZ1560-7496-2017-3(60-68). [In Russian].
  10. Pavlov A.V. Teplofizika landschaftov. Thermal physics of landscapes. Novosibirsk: Nauka, 1979: 286 p. [In Russian].
  11. Repina I.A., Stepanenko V.M., Barskov K.V., Pashkin A.D., Artamonov A.Yu. Interaction of the atmosphere with an inhomogeneous underlying surface. Dinamika i vzaimodeystvie geosfer zemli: materialy Vserossiyskoy konfe-rentsii s mezhdunarodnym uchastiem, posvyashennoy 100-letiyu podgotovki v Tomskom gosudarstvennom universitete spezialistov v oblasti nauk o zemle. Dynamics and interaction of the earth’s geospheres: Proceedings of the All-Russian conference with international participation dedicated to the 100 th anniversary of the training of specialists in the field of earth sciences at Tomsk State University. Tomsk: TGU, 2021: 187–190. [In Russian].
  12. Toropov P.A., Michalenko V.N., Kutuzov S.S., Morozova P.A., Shestakova A.A. Temperature and radiation regime of glaciers on the slopes of Elbrus during the ablation period over the past 65 years. Led i Sneg. Ice and Snow. 2016, 56 (1): 5–19 [In Russian]. https://doi.org/10.15356/2076-6734-2016-1-5-19
  13. Toropov P.A., Shestakova A.A., Smirnov A.M., Popovnin V.V. Assessment of the components of the heat balance of the Dzhankuat glacier (Central Caucasus) during the ablation period in 2007–2015. Kriosfera Zemli. Cryosphere of the Earth. 2018, XXII (4): 42–54 [In Russian]. https://doi.org/10.21782/KZ1560-7496-2018-4(42-54)
  14. Turkov D.V., Sokratov V.S. Calculation of snow cover characteristics of flat areas using the SPONSOR local heat and moisture exchange model and reanalysis data on the example of the Moscow region. Led i Sneg. Ice and Snow. 2016, 56 (3): 369–380 [In Russian]. https://doi.org/10.15356/2076-6734-2016-3-369-380
  15. Shmakin A.B., Rubinshtein K.G. Validation of the dynamic-statistical method for detailing meteorological parameters. Trudy Gidrometcentra Rossii. Proc. of the Hydrometeorological Center of Russia. 2006, 341: 186–208. [In Russian].
  16. Shmakin A.B., Turkov D.V., Michailov A.Yu. Snow cover model taking into account the layered structure and its seasonal evolution. Kriosfera Zemli. Cryosphere of the Earth. 2009, XIII (4): 69–79. [In Russian].
  17. Bintanja R., Van Den Broeke M.R. The Surface Energy Balance of Antarctic Snow and Blue Ice. Journ. of Applied Meteorology. 1995, 34: P. 902–926. https://doi.org/10.1175/1520-0450(1995)034<0902:TSEBOA>2.0.CO;2
  18. Boone A., Etchevers P. An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site. Bull. Amer. Meteorol Society. 2001, 2 (4): 374–394. https://doi.org/10.1175/1525-7541(2001)0022.0.CO;2
  19. Essery R., Semenov V., Turkov D. Snow cover duration trends observed at sites and predicted by multiple models. The Cryosphere. 2020, 14: 4687–4698. https://doi.org/10.5194/tc-14-4687-2020
  20. Etchevers P., Martin E., Brown R. Validation of the energy budget of an alpine snowpack simulated by several snow models (SnowMIP project). Annals of Glaciology. 2004, 38: 150–158. https://doi.org/10.3189/172756404781814825
  21. High Mountain Areas in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (The Intergovernmental Panel on Climate Change (IPCC), 2019). Lead authors R. Hock, G. Rasul, S. Kutuzov et al. 2019.
  22. Kominami Y., Endo Y., Niwano Sh., Ushioda S. Viscous compression model for estimating the depth of new snow. Annals of Glaciology. 1998, 26: 77–82.
  23. Krinner G., Derksen C., Richard E. et al. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geosci. Model Dev. 2018, 11: 5027–5049. https://doi.org/10.5194/gmd-11-5027-2018
  24. Menard C., Essery R., Turkov D. Scientific and human errors in a snow model intercomparison. Bull. Amer. Meteorol Society. 2021, 2021 (1): E61–E79. https://doi.org/10.1175/BAMS-D-19-0329
  25. Landry C.C., Buck K.A., Raleigh M.S., Clark M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res. 2014, 50: 1773–1788. https://doi.org/10.1002/2013WR013711
  26. Lapo K., Nijssen B., Lundquist J.D. Evaluation of Turbulence Stability Schemes of Land Models for Stable Conditions. Journ. of Geophys. Research: Atmosphere. 2019, 124 (6): 3072–3089. https://doi.org/10.1029/2018jd028970
  27. Lejeune Y., Dumont M., Panel J.-M., Lafaysse M., Lapalus P., Le Gae E., Lesaffre B., Morin S. 57 years (1960–2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325m of altitude). Earth Syst. Sci. Data. 2019, 11: 71–88. https://doi.org/10.5194/essd-11-71-2019
  28. Liu S., Lu L., Mao D., Jia L. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements. Hydrology and Earth System Sciences. 2007, 2 (11): 769–783. https://doi.org/10.5194/hess-11-769-2007
  29. Marzeion B., Jarosch A.H., Gregory J.M. Feedbacks and mechanisms affecting the global sensitivity of glaciers to climate change. The Cryosphere. 2014, 8: 59–71.
  30. Pomeroy J.W., Jones H.G. Wind-Blown Snow: Sublimation, transport and changes to polar snow, in: Chemical exchange between atmosphere and polar snow. In: NATO ASI Series, edited by: Wolff, E. and Bales, R.C., Springer-Verlag, Berlin, Heidelberg. 1996, 43: 453–489.
  31. Slater A.G., Schlosser C.A., Desborough C.E. The representation of snow in land surface schemes: results from PILPS 2(d) // Journ. of Hydrometeorology. 2001, 2 (1): 7–25.
  32. Shmakin A.B. The updated version of SPONSOR land surface scheme: PILPS-influenced improvements. Global and Planetary Change. 1998, 19 (1–4): P. 49–62.
  33. Snow and Climate. Ed. by R.L. Armstrong, E. Brun. Cambridge, U.K. Cambridge Univ. Press, 2008: 222 p.
  34. Sokratov S.A., Sato A. The effect of wind on the snow cover. Annals of Glaciology. 2001, 32: 116–120.
  35. Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journal of Glaciology. 1997, 43 (143): 26–41.
  36. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. Intern. Journ. of Climatology. 2019: 4703–4720. https://doi.org/10.1002/joc.6101

Дополнительные файлы



Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.