Альбедо снежного покрова и его параметризация для целей моделирования природных систем и климата

Обложка

Цитировать

Полный текст

Аннотация

Предложена новая схема параметризации альбедо снежного покрова, учитывающая большинство факторов, важных для метаморфизма снега. Проведено тестирование новой схемы параметризации альбедо снега в составе модели LSM SPONSOR по данным многолетних наблюдений. Показано, что новая схема позволяет получать несмещённые оценки альбедо со статистическими характеристиками, близкими к тем, что получены для данных наблюдений.

Об авторах

Д. В. Турков

Институт географии РАН

Email: drozdov.jeka@yandex.ru
Россия, Москва

Е. Д. Дроздов

Институт географии РАН; Московский государственный университет имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: drozdov.jeka@yandex.ru
Россия, Москва; Москва

А. А. Ломакин

Национальный исследовательский университет «Высшая школа экономики»; Институт космических исследований РАН

Email: drozdov.jeka@yandex.ru
Россия, Москва; Москва

Список литературы

  1. Drozdov E.D., Turkov D.V., Toropov P.A., Artamonov A. Yu. Thermal regime of snow cover in winter in the high-mountainous part of Elbrus according to observational data and modeling results. Led i Sneg. Ice and Snow. 2023, 2 (63): 225–242. https://doi.org/10.31857/S2076673423020059 [In Russian].
  2. Kondratiev K.Ya. Aktinometriya. Actinometry. Leningrad: Hydrometeoizdat, 1965: 691 p. [In Russian].
  3. Kotlyakov V.M. Cryosphere and climate. Ekologia i zhizn. Ecology and Life. 2010, 11: 51–59 [In Russian].
  4. Krass M.S., Merzlikin V.G. Radiatsionnaya fizika snega i l’da. Radiational physics of snow and ice. Leningrad: Hydrometeoizdat, 1990: 264 p. [In Russian].
  5. Kuzmin P.P. Fizicheskie svoystva snezhnogo pokrova. Physical properties of snow. Leningrad: Hydrometeoizdat, 1957: 179 p. [In Russian].
  6. Kuzmin P.P. Protsess tayaniya snezhnogo pokrova. The process of snow cover melting. Leningrad: Hydrometeoizdat, 1961: 344 p. [In Russian].
  7. Matveev L.T. Kurs obshchey meteorologii. Fizika atmosfery. General meteorology course. Atmospheric physics. Leningrad: Hydrometeoizdat, 1984: 752 p. [In Russian].
  8. Sneg: Spravochnik. Snow: Handbook. ed. by D.M. Gray, D.H. Mail; Trans. from Eng. ed. by V.M. Kotlyakov. Leningrad: Hydrometeoizdat, 1986: 751 p. [In Russian].
  9. Turkov D.V., Sokratov V.S. Calculating of snow cover characteristics on a plain territory using the model SPONSOR and data of reanalyses (by the example of Moscow region). Led i Sneg. Ice and Snow. 2016, 3 (56): 369–380. https://doi.org/10.15356/2076-6734-2016-3-369-380 [In Russian].
  10. Shmakin A.B., Turkov D.V., Michailov A.Yu. Snow cover model taking into account the layered structure and its seasonal evolution. Kriosfera Zemli. Earth Cryosphere. 2009, 13 (4): 69–79 [In Russian].
  11. Barlett P.A., MacKay M.D., Verseghy D.L. Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmosphere-Ocean. 2006, 44 (3): 207–222. https://doi.org/10.3137/ao.440301
  12. Chandrasekhar S. Radiative transfer. New York: Dover Publications. 2016: 393 p.
  13. Danabasoglu G., Lamarque J.F., Bacmeister J., Bailey D.A., DuVivier A.K., Edwards J., Emmons L.K., Fasullo J., Garcia R., Gettelman A., Hannay C., Holland M.M., Large W.G., Lauritzen P.H., Lawrence D.M., Lenaerts J.T.M., Lindsay K., Lipscomb W.H., Mills M.J., Neale R., Oleson K.W., Otto‐Bliesner B., Phillips A.S., Sacks W., Tilmes S., Van Kampenhout L., Vertenstein M., Bertini A., Dennis J., Deser C., Fischer C., Fox‐Kemper B., Kay J.E., Kinnison D., Kushner P.J., Larson V.E., Long M.C., Mickelson S., Moore J.K., Nienhouse E., Polvani L., Rasch P.J., Strand W.G. The Community Earth System Model Version 2 (CESM2). Journ. Adv Model Earth Syst. 2020, 12 (2): e2019MS001916. https://doi.org/10.1029/2019MS001916
  14. Dang C., Zender C.S., Flanner M.G. Intercomparison and improvement of two-stream shortwave radiative transfer schemes in Earth system models for a unified treatment of cryospheric surfaces. The Cryosphere. 2019, 13 (9): 2325–2343. https://doi.org/10.5194/tc-13-2325-2019
  15. Decharme B., Brun E., Boone A., Delire C., Le Moigne P., Morin S. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model. The Cryosphere. 2016, 2 (10): 853–877. https://doi.org/10.5194/tc-10-853-2016
  16. Dickinson R., Henderson-Sellers A., Kennedy P. Biosphere-Atmosphere Transfer Scheme (BATS) Version le as Coupled to the NCAR Community Climate Model. 1993: 80 p. https://doi.org/10.5065/D67W6959
  17. Flanner M.G., Arnheim J.B., Cook J.M., Dang C., He C., Huang X., Singh D., Skiles S.M., Whicker C.A., Zender C.S. SNICAR-ADv3: a community tool for modeling spectral snow albedo. Geosci. Model Dev. 2021, 14 (12): 7673–7704. https://doi.org/10.5194/gmd-14-7673-2021
  18. He C., Liou K.-N., Takano Y., Yang P., Qi L., Chen F. Impact of Grain Shape and Multiple Black Carbon Internal Mixing on Snow Albedo: Parameterization and Radiative Effect Analysis. Journ. of Geophysical Research: Atmospheres. 2018, 123 (2): 1253–1268. https://doi.org/10.1002/2017JD027752
  19. Hedstrom N., Pomeroy J.W. Intercepted snow in boreal forest: measurement and modelling. Hydrol. Process. 1998, 12: 1611–1625. https://doi.org/10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4
  20. Krinner G., Derksen C., Richard E. ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geosci. Model Dev. 2018, 11: 5027–5049. https://doi.org/10.5194/gmd-11-5027-2018
  21. Landry C.C., Buck K.A., Raleigh M.S., Clark M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res. 2014, 50: 1773–1788. https://doi.org/10.1002/2013WR013711
  22. Lee W.Y., Gim H.J., Park S.K. Parameterizations of Snow Cover, Snow Albedo and Snow Density in Land Surface Models: A Comparative Review. Asia-Pac Journ. Atmos Sci. 2023. 60: 185–210. https://doi.org/10.1007/s13143-023-00344-2
  23. Lejeune Y., Dumont M., Panel J.M., Lafaysse M., Lapalus P., Le Gac E., Lesaffre B., Morin S. 57 years (1960-2017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.). Earth System Science Data. 2019, 11: 71–88. https://doi.org/10.5194/essd-11-71-2019
  24. Menard C., Essery R., Turkov D. Scientific and human errors in a snow model intercomparison. Bulletin of the American Meteorological Society. 2021, 201 (1): E61–E79. https://doi.org/10.1175/BAMS-D-19-0329.1
  25. Rowe P.M., Fergoda M., Neshyba S. Temperature‐Dependent Optical Properties of Liquid Water From 240 to 298 K. JGR Atmospheres. 2020, 125 (17): e2020JD032624. https://doi.org/10.1029/2020JD032624
  26. Snow and Climate. Ed. by R.L. Armstrong, E. Brun. Cambridge, U.K. Cambridge Univ. Press, 2008: 222 p.
  27. Stamnes K., Tsay S.C., Wiscombe W., Jayaweera K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27 (12): 2502. https://doi.org/10.1364/AO.27.002502
  28. Vavrus S. The role of terrestrial snow cover in the climate system. Climate Dynamics. 2007, 29: 73–88. https://doi.org/10.1007/s00382-007-0226-0
  29. Verseghy D. CLASS–The Canadian land surface scheme (version 3.6). Environment Canada Science and Technology Branch Tech. Rep. 2012.
  30. Vionnet V., Brun E., Morin S., Boone A., Faroux S., Moigne P.L., Martin E., Willemet J.M. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geoscientific Model Development. 2012, 5: 773–791. https://doi.org/10.5194/gmd-5-773-2012
  31. Warren S.Q. Optical Properties of Snow. Reviews of Geophysics. 1982, 20: 67–89. https://doi.org/10.1029/RG020i001p00067
  32. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation. Journ. Geophys. Res. 2008, 113 (D14220): 2007JD009744. https://doi.org/10.1029/2007JD009744
  33. Wever N., Schmid L., Heilig A., Eisen O., Fierz C., Lehning M. Verification of the multi-layer SNOWPACK model with different water transport schemes. The Cryosphere. 2015, 9: 2271–2293. https://doi.org/10.5194/tc-9-2271-2015
  34. Whicker C.A., Flanner M.G., Dang C., Zender C.S., Cook J.M., Gardner A.S. SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice. The Cryosphere. 2022, 16: 1197–1220. https://doi.org/10.5194/tc-16-1197-2022
  35. Wiscombe W.J., Warren S.G. A model for the spectral albedo of snow. I: Pure snow. Journ. Atmos. Sci. 1980, 37: 2712–2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.