Experimental Characterization of Biodegradable Films Based on Modified Starch and Chitosan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Gas transport and physico-mechanical properties of synthesized films based on modified starch and chitosan have been studied. The values of the permeability coefficients of pure gases included in the air for films based on modified chitosan and a copolymer based on modified starch and chitosan at a temperature of 23°C were determined. The oxygen permeability coefficient of the synthesized copolymer was compared with other polymers. A copolymer based on modified starch and chitosan was found to have medium oxygen barrier properties. The biodegradability of the samples under the action of the micromycete Aspergillus niger was studied by analyzing the degradation products by chromatography-mass spectrometry. The total biodegradation time of the samples was 4 weeks. These films are promising for use as packaging material.

Full Text

Restricted Access

About the authors

D. M. Zarubin

Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

E. A. Kachalova

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

E. V. Salomatina

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

O. N. Smirnova

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

L. A. Smirnova

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

N. V. Abarbanel

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

A. N. Petukhov

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

A. V. Vorotyntsev

Lobachevsky State University of Nizhny Novgorod

Email: dimazarubin493@gmail.com
Russian Federation, Nizhny Novgorod

References

  1. Wu F., Misra M., Mohanty A.K // Progress in Polymer Science. 2021. V. 117. №101395.
  2. Pradeep S.A., Iyer R.K., Kazan H., Pilla S // Plastics Design Library. 2017. P. 651–673.
  3. Adeleke A.A. // AgriEngineering. 2023. V. 5. I. 1. P. 193–217.
  4. Gupta R.K., Guha P., Srivastav P.P. // Food Chemistry Advances. 2022 V. 1. № 100315.
  5. Mehta V., Nishith D., Marjadi D. // Journal of Environmental Research and Development. 2014. V. 8. I. 4. P. 934–940.
  6. Pasichnyk M., Stanovsky P., Polezhaev P., Zach B., Šyc M., Bobák M., Jansen J.C., Přibyl M., Bara J.E., Friess K., Havlica J., Gin D.L., Noble R.D., Izák P. // Separation and Purification Technology. 2023. V. 323. № 124436.
  7. Jung H., Shin G., Kwak H., Hao L.T., Jegal J., Kin H.J., Jeon H., Park J., Oh D.X. // Chemosphere. 2023. V. 320. № 138089.
  8. Jana A., Modi A. // Carbon Capture Science and Technology. 2024 V. 11. I. December 2023. № 100204.
  9. Wang J., Gardner D.J., Stark N.M., Bousfield D.W., Tajvidi M., Cai Z. // ACS Sustainable Chemistry and Engineering. 2018. V. 6. I. 1. P. 49–70.
  10. Ahmed S., Janaswamy S. // Industrial Crops and Products. 2023. V. 201. № 116926.
  11. Jang S.W., Chang J.H. // Polymer (Korea). 2008 V. 32. I. 1. P. 63–69.
  12. Syrtsova D.A., Teplyakov V.V., Filistovich V.A., Savitskaya T.A., Kimlenka I.M., Grinshpan D.D. // Membranes and Membrane Technologies. 2019. V. 1. I. 6. P. 353–360.
  13. Chen H., Hu X., Chen E., Wu S., McClements D.J., Liu S., Li B., Li Y. // Food Hydrocolloids. 2016. V. 61. P. 662–671.
  14. Chen Y.L., Shull K.R. // Carbohydrate Polymer Technologies and Applications. 2023. V. 5. № 100291.
  15. Agarwal N., Jyoti, Thakur M., Mishra B.B., Singh S.P. // Environmental Technology and Innovation. 2023. V. 31. № 103231.
  16. Jahromi M., Niakousari M., Golmakani M.T., Mohammadifar M.A. // International Journal of Biological Macromolecules. 2020. V. 165. P. 1949–1959.
  17. Cruz-Diaz K., Cobos A., Fernandez-Valle M.E., Diaz O., Cambero M.I. // Food Packaging and Shelf Life. 2019. V. 22. № 100397.
  18. Xu L., Zheng Z., Lou Z., Jiang X., Wang M., Chen G., Chen J., Yan N. // Chemical Engineering Journal. 2023. V. 470. № 143978.
  19. Desireé Sousa da Costa R., Flores S.H., Brandelli A., Vargas C.G., Ritter A.C., Manoel da Cruz Eodrigues A., Meller da Silva L.H. // Food Research International. 2023. № 113172.
  20. Xue W., Zhu J., Sun P., Yang F., Wu H., Li W., // Trends in Food Science and Technology. 2023. V. 136. P. 295–307.
  21. Guo L., Liang Z., Yang L., Du W., Yu T., Tang H., Li C., Qiu H. // Journal of Controlled Release. 2021. V. 338. P. 571–582.
  22. Zhang C., Chen F., Meng W., Li C., Cui R., Xia Z., Liu C. // Carbohydrate Polymers. 2021. V. 253. № 117168.
  23. Patil S., Bhaimalla A.K., Mahapatra A., Dhakane-Lad J., Arputharaj A., Kumar M., Raja A.S.M., Kambli N. // Food Bioscience. 2021. V. 44. № 101352.
  24. Hakke V.S., Landge V.K., Sonawane S.H., Uday Bhaskar Babu G., Ashokkumar M., Flores E.M.M. // Ultrasonics Sonochemistry. 2022. V. 88. № 106069.
  25. Han Lyn F., Tan C.P., Zawawi R.M., Nur Nanani Z.A. // Food Hydrocolloids. 2021. V. 117. № 106707.
  26. Leceta I., Guerrero P., De La Caba K. // Carbohydrate Polymers. 2013. V. 93. I. 1. P. 339–346.
  27. Pak A.M., Maiorova E.A., Siaglova E.D., Aliev T.M., Strukova E.N., Kireynov A.V., Piryazev A.A., Novikov V.V. // Nanomaterials. 2023. V. 13. I. 11. № 1714.
  28. Priyadarshi R., Rhim J.W. // Innovative Food Science and Emerging Technologies. 2020. V. 62. № 102346.
  29. Sazanova T.S., Otvagina K.V., Kryuchkov S.S., Zarubin D.M., Fukina D.G., Vorotyntsev A.V., Voroyntsev I.V. // Langmuir. 2020. V. 36. I. 43. P. 12911–12921.
  30. ASTM 3985-02 // ASTM annual book of standards. 2017.
  31. Qu P., Zhang M., Fan K., Guo Z. // Critical Reviews in Food Science and Nutrition. 2022. V. 62. I. 1. P. 51–65.
  32. Michiels Y., Van Puyvelde P., Sels B. // Applied Sciences (Switzerland). 2017. V. 7. I. 7. № 665.
  33. Almeida T., Karamysheva A., Valente B.F.A., Silva J.M., Braz M., Almeida A., Silvestre A.J.D., Vilela C., Freire C.S.R. // Food Hydrocolloids. 2023. V. 144. № 108934.
  34. Kim T., Tran T.H., Hwang S.Y., Park J., Oh D.X., Kim B.S. // ACS Nano. 2019. V. 13. I. 4. P. 3796–3805.
  35. Compañ V., Ribes A., Diaz-Calleja R., Riande E. // Polymer. 1996. V. 37. I. 11. P. 2243–2250.
  36. Nguyen H.L., Tran T.H., Hao L.T., Jeon H., Koo J.M., Shin G., Hwang D.S., Hwang S.Y., Park J., Oh D.X. // Carbohydrate Polymers. 2021. V. 271. № 118421.
  37. Shayanipour H.R., Bagheri R. // Journal of Materials Research and Technology. 2019. V. 8. I. 3. P. 2987–2995.
  38. Lange J., Wyser Y. // Packaging Technology and Science. 2003. V. 16. I. 4. P. 149–158.
  39. Satam C.C., Irvin C.W., Lang A.W., Jallorina J.C., Shofner M.L., Reyonolds J.R., Meredith J.C. // ACS Sustai nable Chemistry and Engineering. 2018. V. 6. I. 8. P. 10637–10644.
  40. ГОСТ 10354-82. Пленкаполиэтиленовая. Технические условия. 1983.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Grafted polymerisation of starch with acrylamide

Download (242KB)
3. Fig. 2. Scheme of nucleophilic addition of enanthine aldehyde to the amino group of chitosan

Download (280KB)
4. Fig. 3. IR spectra of starch (KRX), chitosan (CHTZ), chitosan-enant aldehyde (CHTZ-EA), starch-acrylamide (KRX-AA), and combined copolymers (KRX-AA-HTZ-EA) samples

Download (697KB)
5. Fig. 4. Principal scheme of the installation for permeability measurement

Download (670KB)
6. Fig. 5. Changes in the appearance of films under the influence of the micro-mycete Aspergillus niger over time

Download (715KB)

Copyright (c) 2024 Russian Academy of Sciences