ROLE OF HYDROGEN PEROXIDE IN THE MYELOPEROXIDE-DEPENDENT ANTIMICROBIAL ACTIVITY OF NEUTROPHILS


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The paper considers the role of hydrogen peroxide (H 2O 2) in the myeloperoxidase-dependent activity of major human protective cells, such as neutrophil leukocytes, in the formation of the strong bactericidal agent hypochlorous acid and its ionic form (HOCl/OCl -). Myeloperoxidase is present in large amounts in the specialized antimicrobial organelles — peroxidasosomes. It catalyzes reduction of H 2O 2 to H 2O, by oxidizing to the active enzyme form that is able to oxidize Cl - to HOCl/OCl - in a dielectric fashion. After fusion, peroxidasosomes and phagosomes receive a variety of cytotoxic agents, including myeloperoxidase, which is formed by the oxidase system of the phagosomal membrane of H 2O 2 /Cl - that enters through the chloride anion channels of the membranes of phagosomes. The phasosomal generation of HOCl/OCT that eliminates and destroys pathogenic microorganisms is of key value for the optimal antimicrobial activity of neutrophils.

全文:

受限制的访问

作者简介

V. ROGOVIN

N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: viknik-fomin@mail.ru
Moscow

R. MURAVYEV

N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences

Moscow

参考

  1. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. Oxford: Oxford University Press, 2007. 300 p.
  2. Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008; 4(5): 278—286.
  3. Klebanoff S. J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 2005; 77(5): 598—625.
  4. Arnholdd J., Flemmig J. Human myeloperoxidase in innate and ackuired immunity. Arch. Biochem. Biophys. 2010; 500(1): 92—106.
  5. Vlasova I. I., Sokolov A.V., Arnhold J. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J. Inorganic Biochem. 2012; 106(1): 75—83.
  6. Ponasenko O.H., Spateholz H., Schiler J., Arnhold J. Myeloperoxidase — induced formation of chlorhydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic. Biol. Med. 2003; 34(5): 553—562.
  7. King D.A., Hannun D., Qi J.-S., Hurst J.K. HOCl — mediated cell death and metabolic dysfunction in the yeast Saccharomices cereviae. Arch. Biochem. Biophys. 2004; 423(1): 170—181.
  8. Nauseef W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 2007; 219(1): 88-102.
  9. Allen R.C., Stephens J.T. Myeloperoxidase selectively binds and selective kills microbes. Infect. Immun. 2011; 79(1): 474-485.
  10. Winterbourn C.C., Hampton M.B., Livesey J.H., Kette A.J. Modeling the reaction of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 2006; 281(35): 39860-39869.
  11. Painter R.G., Bonvillan R.W, Valentine V.G., Lombard G. A., LaPlace S. A., Nauseef W. M., Wang G. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J. Leukoc. Biol. 2008; 83(9): 1345-1353.
  12. Painter R. G., Morrero L., Lombard G.A., Valentine V. G., Nauseef W. M., Wang G. CFTR - mediated halide transport in phagosomes of human neutrophils. J. Leukoc. Biol. 2010; 87(4): 933-942.
  13. Schwartz J., Leidal K.G., Femling J. K., Weiss J. P., Nauseef W.M. Neutrophil bleaching of GFP - expressing staphylococci: probing the intraphagosomal fate of individual bacteria. J. Immunol. 2009; 183(7): 2632-2641.
  14. Муравьев Р.А., Бут П.Г., Фомина В.А., Роговин В.В. Механизм бактерицидной активности в фагосомах нейтрофилов. Известия РАН. Сер. биол. 2002; 4: 437-441.
  15. Davies M.J., Hawikins C.L., Pattison D.I., Rees M.D. Mammalian hemeperoxidases: from molecular mechanisms to health implications. Antioxid. Redox. Signal. 2008; 10(7): 1199-1234.
  16. Papayannopoulos V., Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009; 30(11): 513-521.
  17. Metzler K.D., Fuchs T.A., Nauseef W.M., Rheumaux D., Roesler J., Schultze I., Wahn V., Papayannopoulos V., Zychlinsky A. Myeloperoxidase is required for neutrophil extraacellular trap formation: implications for innate immunity. Blood. 2011; 117(6): 953-959.
  18. Bernroitner M., Zamocky M., Furtmüller P.G., Peschek G., Obinger C. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J. Exp. Bot. 2009; 60(2): 423-440.
  19. Pang Y.Y., Schwartz J., Thoendel M., Ackermann L.W., Horswill A.R., Nauseef W.M. agr - Dependent interactions of Staphylococcus aureus USA 300 with human polymorphonuclear neutrophils. J. Innate Immun. 2010; 2(3): 546-559.
  20. Роговин В.В., Муравьев Р.А., Муштакова В.М. Состав пероксидазосом нейтрофилов. Известия АН. Сер. биол. 2001; 4: 396-401.
  21. Malle E., Furtmüller P.G., Sattler W., Obinger C. Myeloperoxidase: a target for new drug development. Br. J. Pharmacol. 2007; 152(5): 838-854.
  22. Rees M.D., Bottle S.E., Fairfull-Smith K.E., Malle E., Whitelock J.M., Davies M.J. Inhibition of myeloperoxidase - mediated hypochlorous acid production by neutroxides. Biochem. J. 2009; 421(1): 70-86.
  23. Morelandd J.G., Hook J. S., Bailey G., Ulland T., Nauseef W.M. Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 296(10): L1076-L1084.

补充文件

附件文件
动作
1. JATS XML
##common.cookie##