ROLE OF HYDROGEN PEROXIDE IN THE MYELOPEROXIDE-DEPENDENT ANTIMICROBIAL ACTIVITY OF NEUTROPHILS


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The paper considers the role of hydrogen peroxide (H 2O 2) in the myeloperoxidase-dependent activity of major human protective cells, such as neutrophil leukocytes, in the formation of the strong bactericidal agent hypochlorous acid and its ionic form (HOCl/OCl -). Myeloperoxidase is present in large amounts in the specialized antimicrobial organelles — peroxidasosomes. It catalyzes reduction of H 2O 2 to H 2O, by oxidizing to the active enzyme form that is able to oxidize Cl - to HOCl/OCl - in a dielectric fashion. After fusion, peroxidasosomes and phagosomes receive a variety of cytotoxic agents, including myeloperoxidase, which is formed by the oxidase system of the phagosomal membrane of H 2O 2 /Cl - that enters through the chloride anion channels of the membranes of phagosomes. The phasosomal generation of HOCl/OCT that eliminates and destroys pathogenic microorganisms is of key value for the optimal antimicrobial activity of neutrophils.

Texto integral

Acesso é fechado

Sobre autores

V. ROGOVIN

N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: viknik-fomin@mail.ru
Moscow

R. MURAVYEV

N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences

Moscow

Bibliografia

  1. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medicine. Oxford: Oxford University Press, 2007. 300 p.
  2. Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008; 4(5): 278—286.
  3. Klebanoff S. J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 2005; 77(5): 598—625.
  4. Arnholdd J., Flemmig J. Human myeloperoxidase in innate and ackuired immunity. Arch. Biochem. Biophys. 2010; 500(1): 92—106.
  5. Vlasova I. I., Sokolov A.V., Arnhold J. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J. Inorganic Biochem. 2012; 106(1): 75—83.
  6. Ponasenko O.H., Spateholz H., Schiler J., Arnhold J. Myeloperoxidase — induced formation of chlorhydrins and lysophospholipids from unsaturated phosphatidylcholines. Free Radic. Biol. Med. 2003; 34(5): 553—562.
  7. King D.A., Hannun D., Qi J.-S., Hurst J.K. HOCl — mediated cell death and metabolic dysfunction in the yeast Saccharomices cereviae. Arch. Biochem. Biophys. 2004; 423(1): 170—181.
  8. Nauseef W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 2007; 219(1): 88-102.
  9. Allen R.C., Stephens J.T. Myeloperoxidase selectively binds and selective kills microbes. Infect. Immun. 2011; 79(1): 474-485.
  10. Winterbourn C.C., Hampton M.B., Livesey J.H., Kette A.J. Modeling the reaction of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 2006; 281(35): 39860-39869.
  11. Painter R.G., Bonvillan R.W, Valentine V.G., Lombard G. A., LaPlace S. A., Nauseef W. M., Wang G. The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J. Leukoc. Biol. 2008; 83(9): 1345-1353.
  12. Painter R. G., Morrero L., Lombard G.A., Valentine V. G., Nauseef W. M., Wang G. CFTR - mediated halide transport in phagosomes of human neutrophils. J. Leukoc. Biol. 2010; 87(4): 933-942.
  13. Schwartz J., Leidal K.G., Femling J. K., Weiss J. P., Nauseef W.M. Neutrophil bleaching of GFP - expressing staphylococci: probing the intraphagosomal fate of individual bacteria. J. Immunol. 2009; 183(7): 2632-2641.
  14. Муравьев Р.А., Бут П.Г., Фомина В.А., Роговин В.В. Механизм бактерицидной активности в фагосомах нейтрофилов. Известия РАН. Сер. биол. 2002; 4: 437-441.
  15. Davies M.J., Hawikins C.L., Pattison D.I., Rees M.D. Mammalian hemeperoxidases: from molecular mechanisms to health implications. Antioxid. Redox. Signal. 2008; 10(7): 1199-1234.
  16. Papayannopoulos V., Zychlinsky A. NETs: a new strategy for using old weapons. Trends Immunol. 2009; 30(11): 513-521.
  17. Metzler K.D., Fuchs T.A., Nauseef W.M., Rheumaux D., Roesler J., Schultze I., Wahn V., Papayannopoulos V., Zychlinsky A. Myeloperoxidase is required for neutrophil extraacellular trap formation: implications for innate immunity. Blood. 2011; 117(6): 953-959.
  18. Bernroitner M., Zamocky M., Furtmüller P.G., Peschek G., Obinger C. Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J. Exp. Bot. 2009; 60(2): 423-440.
  19. Pang Y.Y., Schwartz J., Thoendel M., Ackermann L.W., Horswill A.R., Nauseef W.M. agr - Dependent interactions of Staphylococcus aureus USA 300 with human polymorphonuclear neutrophils. J. Innate Immun. 2010; 2(3): 546-559.
  20. Роговин В.В., Муравьев Р.А., Муштакова В.М. Состав пероксидазосом нейтрофилов. Известия АН. Сер. биол. 2001; 4: 396-401.
  21. Malle E., Furtmüller P.G., Sattler W., Obinger C. Myeloperoxidase: a target for new drug development. Br. J. Pharmacol. 2007; 152(5): 838-854.
  22. Rees M.D., Bottle S.E., Fairfull-Smith K.E., Malle E., Whitelock J.M., Davies M.J. Inhibition of myeloperoxidase - mediated hypochlorous acid production by neutroxides. Biochem. J. 2009; 421(1): 70-86.
  23. Morelandd J.G., Hook J. S., Bailey G., Ulland T., Nauseef W.M. Francisella tularensis directly interacts with the endothelium and recruits neutrophils with a blunted inflammatory phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 2009; 296(10): L1076-L1084.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2012

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies