Olfaction-related Internet queries as a marker for assessing the epidemic SARS-&iV-2 situation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective. To assess the utility of olfaction-related Internet queries for evaluating the effectiveness of anti-epidemic measures against COVID-19. Materials and methods. Yandex users’ olfaction-related queries were weekly analyzed in the Bryansk, Vladimir, Ivanovo, Kaluga, Moscow, Ryazan, Smolensk, and Tula Regions and in Moscow in March 16, 2020, to February Results. A strong temporal relationship was shown between the self-assessment of odor changes (queries involving the word «olfaction», for example, «loss of smell») and the new COVID-19 cases in the regions of Central Russia. A correlation was found between the number of olfaction-related queries and the new COVID-19 cases: it was very high for Moscow (r = 0.96), high for the Bryansk and Ryazan Regions (r > 0.70), and moderate for the Vladimir, Ivanovo, Kaluga, Moscow, Smolensk, and Tula Regions (0.5 < r < 0.7). The observed peaks of queries were unrelated to the seasonal exacerbation of allergy in Russia in the previous years. Conclusion. The increased sudden interest in olfaction among the Internet users can be regarded as a valuable minimally invasive indicator of the spread of coronavirus in the population, as well as for the evaluation of the effectiveness of anti-epidemic measures against COVID-19.

Full Text

Restricted Access

About the authors

Kuvat T. Momynaliev

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: dhoroshun@gmail.com
ВБ, Associate Professor, Leading Researcher, ON Department

Dimash Kuvatovich Khoroshun

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: dumash.mom@gmail.com
Khoroshun, Consultant, ON Department

Vasiliy G. Akimkin

Central Research Institute of Epidemiology, Russian Federal Service for Supervision of Consumer Rights Protection and Human Well-Being

Email: crie@pcr.ru
MD, Аcademician of the Russian Academy of Sciences, Director

References

  1. Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the internet. J. Med. Internet Res. 2009; 11(1): e11.
  2. Mollema L., Harmsen I.A., Broekhuizen E., Clijnk R., De Melker H., Paulussen T. ct al. Disease detection or public opinion reflection? Content analysis of tweets, other social media, and online newspapers during the measles outbreak in The Netherlands in 2013. J. Med. Internet Res. 2015; 17(5): e128. doi: 10.2196/jmir.3863. https://www.jmir.org/2015/5/e128/
  3. Chen Y., Zhang Y., Xu Z., Wang X., Lu J., Hu W. Avian influenza A (H7N9) and related Internet search query data in China. Sci. Rep. 2019; 9(1): 10434. doi: 10.1038/s41598-019-46898-y
  4. Mohamed N.A. Knowledge, attitude and practice on bats-borne diseases among village residents: a pilot study. Med & Health. 2018; 13(2): 48-57. doi: 10.17576/MH.2018.1302.05. https:// www.cabdirect.org/globalhealth/abstract/20193459604
  5. Zeraatkar K., Ahmadi M. Trends of infodemiology studies: a scoping review. Health. Info Libr. J. 2018; 35(2): 91-120. DOI: 10.1111 /hir. 12216
  6. Tang L., Bie B., Park S., Zhi D. Social media and outbreaks of emerging infectious diseases: A systematic review of literature. Am. J. Infect. Control. 2018; 46(9): 962-72. DOI: 10.1016/j. ajic.2018.02.010
  7. Eysenbach G. SARS and population health technology. J. Med. Intern. Res. 2003; 5(2): e14. doi: 10.2196/jmir.5.2.e14
  8. Menni C., Valdes A.M., Freidin M.B., Sudre C.H., Nguyen L.H., Drew D.A. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020; 26: 1037-40. doi: 10.1038/s41591-020-0916-2
  9. Eliezer M., Hautefort C., Hamel A.L., Verillaud B., Herman P., Houdart E., Eloit C. Sudden and complete olfactory loss function as a possible symptom of COVID-19. JAMA Otolaryngol. Neck Surg. 2020; 146 : 674-5. DOI: 10.1001/ jamaoto.2020.0832
  10. Gautier J.-F., Ravussin Y. A new symptom of COVID-19: loss of taste and smell. Obesity 2020; 28: 848. DOI: 10. 1002/oby. 22809
  11. Pellegrino R., Cooper K.W., Di Pizio A., Joseph P.V., Bhutani S., Parma V. Corona viruses and the chemical senses: past, present, and future. Chem. Senses 2020: bjaa031. doi: 10.1093/chemse/ bjaa031
  12. Bagheri S.H., Asghari A., Farhadi M., Shamshiri A.R., Kabir A., Kamrava S.K. et al. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak in Iran. Med. J. Islam. Repub. Iran. 2020; 34: 62. doi: 10.34171/mjiri.34.62
  13. Beltrin-Corbellini A., Chico-Garcia J.L., Martinez-Poles J., Rodriguez-Jorge F., Natera-Villalba E. et al. Acute-onset smell and taste disorders in the context of Covid-19: a pilot multicenter PCR-based case-control study. Eur. J. Neurol. 2020; 27(9): 1738-41. doi: 10.1111/ene.14273.
  14. B6n6zit F., Le Turnier P., Declerck C., Paill6 C., Revest M., Dub6e V. et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect. Dis. 2020; 20: 1014-5. doi: 10.1016/S1473-3099(20)30297-8
  15. Giacomelli A., Pezzati L., Conti F., Bernacchia D., Siano M, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin. Infect. Dis. 2020; 71: 889-90. doi: 10.1093/cid/ciaa330
  16. Haehner A., DrafJ., Drager S., de With K., Hummel T. Predictive value of sudden olfactory loss in the diagnosis of COVID-19. ORL 2020; 82: 175-80. doi: 10.1159/000509143
  17. Yan C.H., Faraji F., Prajapati D.P., Ostrander B.T., DeConde A.S. Self- reported olfactory loss associates with outpatient clinical course in Covid-19. Int. Forum Allergy Rhinol. 2020; 10: 821-31. doi: 10.1002/alr.22592
  18. Момыналиев К.Т., Акимкин В.Г. Анализ запросов динамики Google Trends в России в период пандемии коронавирусной инфекции как инструмент эпидемиологического надзора. Эпидемиол. инфекц. болезни. Актуал. вопр. 2020; 10(4): 33-7. DOI: https://dx.doi.org/10.18565/epidem.2020.4.33-37
  19. Salje H., Tran Kiem C., Lefrancq N., Courtejoie N. et al. Estimating the burden of SARS-CoV-2 in France. Science 2020; 369: 208-11. doi: 10.1126/science.abc3517
  20. Levinson R., Elbaz M., Ben-Ami R., Shasha D., Levinson T., Choshen G. et al. Time course of anosmia and dysgeusia in patients with mild SARS-CoV-2 infection. Infect. Dis. (Lond.). 2020; 52(8): 600-2. doi: 10.1080/23744235.2020.1772992. PMID: 32552475
  21. Klopfenstein T., Kadiane-Oussou N.J., Toko L., Royer P.Y., Lepiller Q., Gendrin V., Zayet S. Features of anosmia in COVID-19. Med. Mal. Infect. 2020; 50: 436-9. DOI: 10.1016/j. medmal.2020.04.006
  22. Higgins T.S., Wu A.W., Sharma D. et al. Correlations of Online Search Engine Trends With Coronavirus Disease (COVID-19) Incidence: Infodemiology Study. JMIR Public Health Surveill. 2020; 6(2): e19702. doi: 10.2196/19702
  23. Walker A., Hopkins C., Surda P. Use of Google Trends to investigate loss-of-smell-related searches during the COVID-19 outbreak. Int. Forum Allergy Rhinol. 2020; 10(7): 839-47. doi: 10.1002/alr.22580
  24. Pierron D., Pereda-Loth V., Mantel M., Moranges M., Bignon E., Alva O. et al. Smell and taste changes are early indicators of the COVID-19 pandemic and political decision effectiveness. Nat. Commun. 2020; 11(1): 5152. doi: 10.1038/s41467-020-18963-y. PMID: 33056983; PMCID: PMC7560893
  25. Karni N., Klein H., Asseo K., Benjamini Y., Israel S., Nammary M. et al. Self-Rated Smell Ability Enables Highly Specific Predictors of COVID-19 Status: A Case-Control Study in Israel. Open. Forum Infect. Dis. 2020; 8(2): ofaa589. doi: 10.1093/ofid/ofaa589. PMID: 33604398; PMCID: PMC7798480

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies