Research of the Composition of Wax Deposits and the Processes of Their Formation in Transformer Oil

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper presents the results of studying the elemental composition of sediments, including waxy ones, from high-voltage oil-filled equipment in which transformer oil has been in use for more than 30 years. Using the method of inductively coupled plasma mass spectrometry, metals such as Cu, Fe, Zn, Ni, Cd, Co, Pb, Cr, and Mn were detected in deposits from transformers and high-voltage bushings. At the same time, the deposits from power transformers contain the greatest amount of iron (Fe) >> copper (Cu) > zinc (Zn), and the deposits from high-voltage oil-filled bushings contain copper (Cu) ≈ iron (Fe) >> zinc (Zn). Special experiments have been carried out to confirm the mechanism of formation of organometallic compounds in oil, in particular, the formation of stearic acid salts. The experiments consisted of preparing model solutions close to the composition of transformer oil and consisting of hexane, ionol, butyl stearate and stearic acid; adding to them powdered metals (Cu, Sn, Zn, Fe, Al) and their oxides (CuO, SnO, ZnO, Fe2O3, Al2O3); keeping the mixture for 1–20 hours and then determining the concentration of the components. Research has shown that salts of carboxylic acids in an organic matrix are formed by the interaction of carboxylic acid with metals (Zn, Fe, Al) or their oxide films (ZnO, Fe2O3, Al2O3). With less active metals (Cu and Sn), as well as with their oxides (CuO and SnO), the consumption of stearic acid was not observed, that is, the reaction between the acid and additives (Cu, Sn, CuO, SnO) does not occur, this indicates that that copper and tin in oil deposits are associated with other anions, mainly with the sulfide ion.

Full Text

Restricted Access

About the authors

M. N. Lyutikova

Новосибирский государственный технический университет

Author for correspondence.
Email: m.lyutikova@mail.ru

к. х. н.

Russian Federation, Новосибирск

A. V. Ridel

Новосибирский государственный технический университет

Email: m.lyutikova@mail.ru

к. т. н.

Russian Federation, Новосибирск

S. V. Nehoroshev

Ханты-Мансийская государственная медицинская академия

Email: m.lyutikova@mail.ru

д. т. н.

Russian Federation, Ханты-Мансийск

V. M. Muratova

Югорский государственный университет

Email: m.lyutikova@mail.ru
Russian Federation, Ханты-Мансийск

References

  1. Sarathi R., Yadav, K.S., Swarna M. Understanding the surface discharge characteristics of thermally aged copper sulphide diffused oil impregnated pressboard material. IEEE Trans. Dielec. and Elec. Insul. 2015; 22(5): 2513–2521.
  2. Sevostyanova O., Pasalskiy B., Zhmud B. Copper release kinetics and ageing of insulation paper in oil-immersed transformers. Engineering. 2015; 7: 514–529.
  3. Zukowski P. et al. An analysis of AC conductivity in moist oil-impregnated insulation pressboard. IEEE Trans. Dielec. and Elec. Insul. 2015; 22 (4): 2156–2164.
  4. Львов М. Ю. Коллоидно-дисперсные процессы в высоковольтных герметичных вводах трансформаторов. Электрические станции. 2000; 4: 49–52. L’vov M. Ju. Colloidal-dispersed processes in high-voltage sealed input transformers. Jelektricheskie stancii = Electric stations. 2000; 4: 49–52.
  5. L’vov S.Yu. et al. The development of coil short circuits when transformer windings become contaminated with metalcontaining colloidal particles. Power Technology and Engineering. 2012; 45(5): 385–391.
  6. Vasin V. P., Dolin A. P. Development of methods of evaluation of power transformer insulation aging taking into account random exploitation factors. CIGRE. 2009. 111.
  7. Lundgaard L. E., Hansen W., Linhjell D., Painter T. J. Aging of Oil – Impregnated Paper in Power Transformers. IEEE Trans. Dielec. and Elec. Insul. 2004; 19(1): 230–239.
  8. Лютикова М. Н., Коробейников С. М., Коновалов А. А. Изучение состава восковых отложений из высоковольтного оборудования. Энергетик. 2022; 10: 10–13. Ljutikova M. N., Korobejnikov S. M., Konovalov A. A. Study of the composition of wax deposits from high-voltage equipment. Jenergetik = Energetik. 2022; 10: 10–13.
  9. Осотов В. Н. О влиянии масла марки ГК на надёжность электрооборудования. [Электронный ресурс]. Режим доступа: http://www.uraldiag.ru/UPLOAD/user/doklad-o-masle-gk.pdf. Osotov V. N. On the influence of GK oil on the reliability of electrical equipment. http://www.uraldiag.ru/UPLOAD/user/doklad-o-masle-gk.pdf.
  10. Korobeynikov S., Lyutikova M., Konovalov A. Spectral measurement of the precipitations composition in OIP insulation of the high-voltage bushings // 48th session CIGRE, 2020. Paper D1–110.
  11. Nasrat L. S., Kassem N., Shukry N. Aging effect on characteristics of oil impregnated insulation paper for power transformers. Engineering. 2013; 5: 1–7.
  12. Vita A., Patrocinio P. R.T., Godinho S. A., Peres E. G., Baudalf J. The effect of passivator additive used in transformers and reactors mineral oil to neutralize the sulfur corrosion and its influence on low thermal defect. CIGRE. 2008. 2–215.
  13. Липштейн Н. А., Шахнович М. И. Трансформаторное масло. М.: Энергоатомиздат, 1983. 296 с. Lipshtejn N. A., Shahnovich M. I. Transformer oil. Moscow: Jenergoatomizdat Publ., 1983. 296 р.
  14. ASTM D3635-2013. Standard Test Method for Dissolved Copper In Electrical Insulating Oil By Atomic Absorption Spectrophotometry. ASTM International, 2013. 4 p.
  15. ASTM D7151-05. Standard Test Method for Determination of Elements in Insulating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). ASTM International, 2005. 5 p.
  16. ГОСТ 13538-68. Присадки и масла с присадками. Метод определения содержания бария, кальция и цинка комплексонометрическим титрованием. М.: ИПК Издательство стандартов, 1969. 10 с. GOST 13538-68. Additives and oils with additives. Method for determining the content of barium, calcium and zinc by complexometric titration. Moscow: IPK Izdatel’stvo standartov Publ., 1969. 10 p.
  17. ASTM 4628-02. Standard Test Methods for Analysis of Barium, Calcium, Magnesium, and Zinc in Unused Lubricating Oils by Atomic Absorption Spectrometry. ASTM International, 2003. 6 p.
  18. ASTM UOP842-83. Nickel, Iron, Sulfur and Vanadium in Distillate, Residual Oils and Pitches by XRF. ASTM International, 1983. 9 p.
  19. ASTM D4927-20. Standard Test Methods for Elemental Analysis of Lubricant and Additive Components – Barium, Calcium, Phosphorus, Sulfur, and Zinc by Wavelength-Dispersive X-Ray Fluorescence Spectroscopy. ASTM International, 2021. 10 p.
  20. ASTM D6443-99. Test Method for Determination of Calcium, Chlorine, Copper, Magnesium, Phosphorus, Sulfur, and Zinc in Unused Lubricating Oils and Additives by Wavelength Dispersive X-ray Fluorescence Spectrometry (Mathematical Correction Procedure). ASTM International, 1999. 7 p.
  21. ASTM D6481-99. Standard Test Method for Determination of Phosphorus, Sulfur, Calcium, and Zinc in Lubrication Oils by Energy Dispersive X-ray Fluorescence Spectroscopy. ASTM International, 1999. 4 p.
  22. ASTM D6595-16. Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry. ASTM International, 2016. 6 p.
  23. ASTM D4951-02. Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry. ASTM International, 2003. 5 p.
  24. ASTM D5185-18. Standard Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). ASTM International, 2018. 9 p.
  25. ASTM D7040-15. Standard Test Method for determination of Trace Elements in Middle Distillate Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). ASTM International, 2015. 6 p.
  26. Лютикова М. Н., Коробейников С. М., Ридель А. В. Применение хромато-масс спектрометрии для определения кислотного состава трансформаторного масла. Омский научный вестник. 2023; 1(185): 109–113. Ljutikova M. N., Korobejnikov S. M., Ridel’ A. V. Application of gas chromatography-mass spectrometry to determine the acid composition of transformer oil. Omskij nauchnyj vestnik = Omsk Scientific Bulletin. 2023; 1(185): 109–113.
  27. Working Group A2.32 CIGRE. «Copper Sulphide in Transformer Insulation» (CIGRE Brochure № 378 April 2009, 38 p.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Appearance of waxy deposits on various parts high-voltage bushings with paper-oil isolation

Download (266KB)
3. Fig. 2. Chemical structures of naphthenic salts (1) and carboxylic (2) acids

Download (49KB)
4. Fig. 3. Residual concentration of compounds in model solutions after their exposure to metals and metal oxides for 1 hour

Download (183KB)
5. Fig. 4. Residual concentration of compounds in model solutions after their exposure to metals and metal oxides for 20 hours

Download (180KB)
6. Fig. 5. IR absorption spectrum: 1 – model solution; 2 – model solution + zinc oxide powder, mixing time 1 hour; 3 – model solution + zinc oxide powder, mixing time 20 hours

Download (175KB)
7. (1.1)

Download (31KB)
8. (1.2)

Download (34KB)

Copyright (c) 2023 Lyutikova M.N., Ridel A.V., Nehoroshev S.V., Muratova V.M.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies