DEVELOPMENT OF METHODS FOR DETERMINATION OF SPECIFIC IMPURITIES IN THE GLUTATIONION RESTORED SUBSTANCE


Cite item

Full Text

Abstract

Glutathione (γ-L-glutamyl-L-cysteinylglycine) is the most important low molecular weight intracellular thiol tripeptide consisting of three amino acids – glycine, cysteine and glutamic acid. In Russian pharmacopoeia there is no regulatory documentation for glutathione, therefore, the development of a pharmacopoeial item for the specified substance is a relevant problem.The aim of the article is the development of methods for determining foreign specific impurities in glutathione.Materials and methods. The substance of glutathione reduced (CAS 70-18-8, EC 2007254, Applichem, Germany) containing impurities, and a standard sample of reduced glutathione (Sigma Aldrich, Japan) were used as the objects of the study. The analysis was carried out by using a high-performance liquid chromatography method in the reverse phase version and a thin layer chromatography method. The chromatography using RP HPLC was performed after preliminary derivatization of glutathione and its specific impurities with dancil chloride. Specific impurities in glutathione are dipeptides and amino acids. Therefore, they, like glutathione, can react with dancil chloride. Dancil derivatives are formed, and they can be determined by chromatographic separation.Results. As a result of chromatography by the method of RP HPLC of derivatized dancil chloride glutathione it has been established that this reaction makes it possible to detect impurities in it. Glutathione derivatives are well separated by chromatography by implementing the method of RP HPLC and have different absorption maxima. The glutathione derivative had an absorption maximum at λmax=284 nm. The derivatives belonging to specific glutathione impurities absorb at λmax=288 nm and λmax=296 nm. The data obtained using RP HPLC were confirmed by TLC in the isopropanol-water (2:1) system. Three components were found out, one of which corresponds to glutathione, while two others are impurities.Conclusion. Methods for determining impurities in the glutathione substance using RP HPLC methods with preliminary derivatization with dancil chloride and TLC with ninhydrin detection have been worked out. A comparative analysis of the data obtained makes it possible to state that the OF-HPLC method with pre-column derivatization is more reliable, since it is more sensitive to impurities, and also makes it possible to study the UV profiles of impurity components better than the TLC method. Therefore, for the detection of impurities in the substance of glutathione, it is more preferable to use RP-HPLC with pre-column derivatization. The results of this study can be recommended for inclusion in the regulatory documentation on the substance of glutathione in the section “Impurities”.

About the authors

K. A. Alexeeva

Belgorod State Research University

Email: 740890@bsu.edu.ru

D. I. Pisarev

Belgorod State Research University

Email: pisarev@bsu.edu.ru

A. Yu. Malyutina

Belgorod State Research University

Email: malyutina_a@bsu.edu.ru

N. N. Boyko

Belgorod State Research University

Email: boykoniknik@gmail.com

References

  1. Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes // Biochimica et Biophysica Acta (BBA) – General Subjects. – 2013. – Т. 1830, №5. – С. 3217–3266. DOI: https://doi.org/10.1016/j.bbagen.2012.09.018.
  2. Kojer K., Bien M., Gangel H., Morgan B., Dick T.P., Riemer J., Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state // The EMBO Journal. – 2012. – Т. 31, №14. – С. 3169–3182. doi: 10.1038/emboj.2012.165.
  3. Mieyal J.J., Gallogly M.M., Qanungo S., Sabens E.A., Shelton M.D., Molecular mechanisms and clinical implications of reversible protein S-glutathionylation // Antioxid Redox Signal. – 2008. – Т. 10, №11. – С. 1941–1988. DOI: https://doi.org/10.1089/ars.2008.2089.
  4. Hayes J.D., Flanagan J.U., Jowsey I.R. Glutathione transferases // Annu Rev Pharmacol Toxicol. – 2005. – Т. 45. – С. 51–88. DOI: https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.
  5. Yu B.P., Chung H.Y. Adaptive mechanisms to oxidative stress during aging // Mech Ageing Dev. –2006. – Т. 127, №5. – С. 436–443. DOI: https://doi.org/10.1016/j.mad.2006.01.023.
  6. Forman H.J., Zhang H., Rinna A. Glutathione: Overview of its protective roles, measurement, and biosynthesis // Mol Aspects Med. – 2009. – Т. 30, №1–2. – С. 1–12. DOI: https://doi.org/10.1016/j.mam.2008.08.006.
  7. Boyland E., Chasseaud L.F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis // Adv Enzymol Relat Areas Mol Biol. – 1969. – Т. 32. – С. 173–219.
  8. Zimmermann A.K., Loucks F.A., Schroeder E.K., Bouchard R.J., Tyler K.L., Linseman D.A. Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for BCL-2 antioxidant function at mitochondria // J Biol Chem.. – 2007. – Т. 282, №40. – С. 29296–29304. doi: 10.1074/jbc.M702853200.
  9. Woodbridge J.E. Princeton N.J. Патент США: US3864085A. Glutathione reagent and test method. Дата: 31.10.1973.
  10. Ellman G.L. Tissue sulfhydryl groups // Arch Biochem Biophys. – 1959. – Т. 82, №1. – С. 70–77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6.
  11. Agrawal S.B., Agrawal M., Lee E.H., Kramert G.F., Pillai P. Changes in polyamine and glutathione contents of a green algae, Chlorogonium elongatum (Dang) France exposed to mercury // Environ. Exp. Botany. – 1992. – Т. 32, №2. – C. 145–151. DOI: https://doi.org/10.1016/0098-8472(92)90039-5.
  12. Hissin P.J., Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues // Anal Biochem. – 1976. – Т. 74, №1. – С. 214–226. DOI: https://doi.org/10.1016/0003-2697(76)90326-2.
  13. Sutariya V., Wehrung D., Geldenhuys W.J. Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione // J. Chromatogr. Sci. – 2012. – Т. 50, №3. – С. 271–276. DOI: https://doi.org/10.1093/chromsci/bmr055.
  14. Di Pietra A.M., Gotti R., Bonazzi D., Andrisano V., Cavrini V. HPLC determination of glutathione and L-cysteine in pharmaceuticals after derivatization with ethacrynic acid // J Pharm Biomed Anal. – 1994. – Т. 12, №1. – С. 91–98. DOI: https://doi.org/10.1016/0731-7085(94)80015-4.
  15. Giustarini D., Dalle-Donne I., Milzani A., Fanti P., Rossi R. Analysis of GSH and GSSG after derivatization with N-ethylmaleimide // Nat Protoc. – 2013. – Т. 8, №9. – С. 1660–1669. doi: 10.1038/nprot.2013.095.
  16. Iwasaki Y., Saito Y., Nakano Y., Mochizuki K., Sakata O., Ito R., Saito K., Nakazawa H. Chromatographic and mass spectrometric analysis of glutathione in biological samples // J Chromatogr. B Analyt Technol Biomed LifeSci. – 2009. – Т. 877, №28. – С. 309–3317. DOI: https://doi.org/10.1016/j.jchromb.2009.07.001
  17. Lee S.G., Yim J., Lim Y., Kim J.H. Validation of a liquid chromatography tandem mass spectrometry method to measure oxidized and reduced forms of glutathione in whole blood and verification in a mouse model as an indicator of oxidative stress // J. Chromatogr. B. – 2016. – Т. 1019. – С. 45–50. DOI: https://doi.org/10.1016/j.jchromb.2015.10.041.
  18. Gawlik M., Krzyżanowska W., Gawlik M.B., Filip M. Optimization of determination of reduced and oxidized glutathione in rat striatum by HPLC method with fluorescence detection and pre-column derivatization // Acta Chromatographica. – 2014. – Т. 26, №2. – С. 335–345. DOI: https://doi.org/10.1556/AChrom.26.2014.2.10.
  19. Bald E., Głowacki R. Analysis of saliva for glutathione and metabolically related thiols by liquid chromatography with ultraviolet detection // Amino Acids. – 2005. – Т. 28, №4. – С. 431–433. doi: 10.1007/s00726-005-0195-8.
  20. Safavi A., Maleki N., Farjami E., Mahyari F.A. Simultaneous Electrochemical Determination of Glutathione and Glutathione Disulfide at a Nanoscale Copper Hydroxide Composite Carbon Ionic Liquid Electrode // Anal Chem. – 2009. – Т. 81, №18. – С. 7538–7543. doi: 10.1021/ac900501j.
  21. Raoof J.B., Ojani R., Karimi-Maleh H. Electrocatalytic oxidation of glutathione at carbon paste electrode modified with 2,7-bis (ferrocenyl ethyl) fluoren-9-one: application as a voltammetric sensor // J Appl Electrochem. – 2009. – Т. 39, №8. – С. 1169–1175. DOI: https://doi.org/10.1007/s10800-009-9781-x
  22. British Pharmacopoeia. Т.1. Her Majetys stationary office. – Лондон, 2005. – C. 924–926.
  23. European Pharmacopoeia – European Directorate for Quality of Medicines and Health care. Strasbourg, France, 2004. – С. 2727.
  24. Japanese Pharmacopoeia. 17th edition. English version. The Ministry of health, labour and welfare. 2062 с.
  25. Алексеева К.А., Писарев Д.И., Новиков О.О., Малютина А.Ю. Разработка методики предколоночной дериватизации глутатиона восстановленного 4-метокси-2-нитрофенил-изотиоцианатом для определения методом высокоэффективной жидкостной хроматографии // Фармация и фармакология. – 2018. – Т. 6, №3. – С. 229–240. doi: 10.19163/2307-9266-2018-6-3-229-240.
  26. Шатц В.Д., Сахартова О.В. Высокоэффективная жидкостная хроматография: Основы теории. Методология. Применение в лекарственной химии; АН ЛатвССР, Ин-т органич. синтеза. – Рига: Зинатне, 1988. – 390 с.
  27. Шаршунова М. Тонкослойная хроматография в фармации и клинической биохимии. В 2-х ч. / М. Шаршунова, В. Шварц, Ч. Михалец. пер. со словац. – М.: Мир, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Alexeeva K.A., Pisarev D.I., Malyutina A.Y., Boyko N.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: ПИ № ФС 77 - 67428 от 13.10.2016. 

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies