NANOELECTROCATALYSTS BASED PALLADIUM FOR FUEL CELLS WITH DIRECT OXIDATION OF FORMIC ACID


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In paper electrode materials with palladium nanoparticles on polymer matrix substrates for energy sources have been formed. Nanocomposites were investigated by atomic force and scanning electron microscopy. The catalytic activity of formed electrodes in the formic acid oxidation reaction was evaluated by voltammetry method.

全文:

受限制的访问

作者简介

Marina Lebedeva

MIREA - Russian Technological University

Email: lebedevamv@mitht.ru
candidate of Chemical Sciences; associate professor of Physical Chemistry Ya.K. Syrkina Moscow, Russian Federation

Alexey Antropov

MIREA - Russian Technological University

Email: lexeyantrop@yandex.ru
candidate of Technical Sciences; associate professor, Department of Energy Technologies, Systems and Installations Moscow, Russian Federation

Alexander Ragutkin

MIREA - Russian Technological University

Email: ragutkin@mirea.ru
candidate of Technical Sciences; vice-rector for Innovative Development Moscow, Russian Federation

Nicolay Yashtulov

MIREA - Russian Technological University

Email: yashtulovna@mail.ru
doctor of Chemical Sciences; professor, Department of Energy Technologies, Systems and Installations Moscow, Russian Federation

参考

  1. Mazurkiewicz-Pawlicka M., Malolepszy A., Mikolajczuk-Zychora A. et al. Simple method for enhancing the catalytic activity of Pd deposited on carbon nanotubes used in direct formic acid fuel cells // Applied Surface Science. 2019. № 476. P. 806-814.
  2. Ma T., Li C., Liu T. et al. Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells’ application // Journal of Saudi Chemical Society. 2018. № 22. P. 846-854.
  3. Kang Y., Ren M., Zou Z. et al. Improved electrocatalytic performance of Pd nanoparticles with size-controlled Nafion aggregates for formic acid oxidation // Electrochimica Acta. 2010. № 55. P. 5274-5280.
  4. Ozoemena K.I., Chen S. Nanomaterials for fuel cell catalysis. Springer, 2016. 583 p.
  5. Яштулов Н.А., Лебедева М.В. Водородная энергетика возобновляемых источников тока // Российский технологический журнал. 2017. № 5. С. 58-73.
  6. Dresch M.A., Isidoro R.A., Linardi M. et al. Influence of solgel media on the properties of Nafion-SiO2 hybrid electrolytes for high performance proton exchange membrane fuel cells operating at high temperature and low humidity // Electrochimica Acta. 2013. № 94. P. 353-359.
  7. Spry D.B., Goun A., Glusac K. et al. Proton transport and the water environment in Nafion fuel cell membranes and AOT reverse micelles // Journal of American Chemical Society. 2007. № 129. Р. 8122-8130.
  8. Hasanabadi N., Ghaffarian S.R., Hasani-Sadrabadi M.M. Nafionbased magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells // Solid State Ionics. 2013. № 232. P. 58-67.
  9. Wang Z., Tang H., Zhang H. et al. Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell // Journal of Membrane Science. 2012. № 421-422. P. 201-210.
  10. Lebedeva M.V., Antropov A.P., Ragutkin A.V., Yashtulov N.A. The electrode materials based on carbon nanotubes and polymer matrix modified with platinum catalysts for chemical power sources // International Journal of Applied Engineering Research. 2018. № 13. P. 16774-16777.
  11. Лебедева М.В., Яштулов Н.А., Флид В.Р. Нанокатализаторы палладия на комбинированных матрицах-носителях для портативных источников тока // Кинетика и катализ. 2019. № 60. С. 147-151.
  12. Ru C., Gu Y., Duan Y. et al. Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sul-fonated poly(arylene ether ketones) for direct methanol fuel cells // J. Membrane Science. 2019. № 573. P. 439-447.

补充文件

附件文件
动作
1. JATS XML


##common.cookie##