Determination of the main parameters for modeling the dynamic load process in drives of high-speed machines


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Introduction. The article is devoted to the study of the synthesized concept of frictional contact of solids in crank presses. As a result of the analysis, the possibility of obtaining the maximum load characteristic of the friction contact within the interval of variation of the friction coefficient has been established. The possibility of equality of the values of the friction force of the friction contact at the boundaries of the indicated interval in the presence of a maximum and the achievement of their greatest stability under these conditions is also revealed. Materials and methods. When the angle value changes, the position of the maximum point changes. Since only the angle ratio establishes the equality of the friction forces at the boundaries of the interval of variation of the friction coefficient, changing the position of the maximum point of the function leads to a violation of this equality. In this case, the accuracy coefficient should be determined by the ratio of the maximum of the function to the smallest boundary value. To do this, it is necessary to establish trends in the change of the boundary values of the function associated with the variation of the angle. To solve this problem, a new value of the pressure tangent was presented as a product of the coefficient of variation and the base value of the tangent angle. The results of the study. The results show a high stability of the friction force during sliding of the friction contact bodies, although at large values of the pressure angle of the sensitive elements of the transducer sensor, the maximum friction force may briefly be proportional to the current value of the friction coefficient. Discussion and conclusions. As we see, the upgraded concept of frictional contact allows theoretically to obtain a very high stability of the friction force, however, due to the relatively large value of the angle and force parameter, it is used inefficiently. A necessary condition for the absence of vanishing of the output parameter of the main friction group of the friction contact in the interval of variation of the friction coefficient and the presence of the maximum function of the load capacity of the friction contact is the transfer of its full load by the sensitive elements of the additional friction group. An additional condition for the existence of a maximum is the need for the sensitive elements of the main friction group to transfer part of its full load with an equal number of friction pairs of both friction groups, and the sensitive elements to transfer the full load of the main friction group with less than the additional friction group number of friction pairs.

Full Text

Restricted Access

About the authors

Kirill O. Kobzev

Don State Technical University

Email: 5976765@mail.ru
Cand. Sci. (Eng.); associate professor at the Department of ETSiL Rostov-on-Don, Russian Federation

Sergey A. Vyalov

Don State Technical University

senior lecturer Rostov-on-Don, Russian Federation

Roman S. Durov

Don State Technical University

Email: roma.0107@mail.ru
master’s student Rostov-on-Don, Russian Federation

Ekaterina V. Varnakova

Don State Technical University

Email: katya-arena97@mail.ru
master’s student Rostov-on-Don, Russian Federation

Evgeniy S. Bozhko

Don State Technical University

master’s student Rostov-on-Don, Russian Federation

References

  1. Dmitriev A.I., Popov V.L., Psakhie S.G. Simulation of surface topography with the method of mavable cellular automata // Tribology International. 2006. Vol. 39. No. 5. Pp. 444-449.
  2. Osterle W., Dmitriev A., Klob H., Urban I. Towards a better understanding of brake friction materials // Wear. 2007. Vol. 263. No. 7-12. Pp. 1189-1201.
  3. Mosey N.J., Müser M.H., Lipkowitz K.B., Cundari T.R. Atomistic modeling of friction // Reviews in Computational Chemistry. 2007. Vol. 25. Pp. 67-124.
  4. Koskilinna J.O., Linnolahti M., Pakkanen T.A. Friction paths for cubic boron nitride: An ab initio study // Tribology Letters. 2007. Vol. 27. No. 2. Pp. 145-154.
  5. Kobzev K., Chukarin A. Principles of improving the smoothness of the working mechanism in forging and stamping machines // IOP Conference Series: Earth and Environmental Science. 2019. No. 403. Pp. 12-145.
  6. Kobzev K.O., Bozhko E.S., Mozgovoi A.V. et al. Theoretical foundations of the use of single-circuit negative feedback in safety friction clutches with differentiated friction pairs installed in forging equipment // IOP Conference Series: Materials Science and Engineering. 2019. No. 680. Pp. 12-14.
  7. Kobzev K.O., Bozhko E.S., Mozgovoi A.V. et al. The study of the use of multi-disc safety friction clutches in the working bodies of crank presses // IOP Conference Series: Materials Science and Engineering. 2019. No. 680. Pp. 12-13.
  8. Сидоренко В.С., Ле Чунг Киен. Моделирование динамической системы линейного позиционирования гидропривода подачи агрегатной сверлильной головки станка // Вестник Дон. гос. техн. ун-та. 2013. № 5/6 (74/75). С. 153-159.
  9. Шишкарёв М.П. Компоновка базового варианта адаптивной фрикционной муфты второго поколения // Сборка в машиностроении, приборостроении. 2010. № 7. С. 16-20.
  10. Шишкарёв М.П. Особенности компоновки модернизированного варианта адаптивной фрикционной муфты первого поколения // Сборка в машиностроении, приборостроении. 2012. № 5. С. 28-35.
  11. Грищенко В.И., Сидоренко В.С. Моделирование процесса позиционирования исполнительных механизмов технологического оборудования дискретным пневмогидравлическим устройством с пневматическими линиями связи // Вестник Дон. гос. техн. ун-та. 2009. Т. 9. № 2. С. 81-89.
  12. Аль-Кудах А.М., Сидоренко В.С., Грищенко В.И. Моделирование процесса позиционирования поворотно-делительных механизмов автоматического технологического оборудования устройствами с гидравлическими линиями связи // Вестник Дон. гос. техн. ун-та. 2008. Т. 8. № 4 (39). С. 191-201.
  13. Рубанов В.В., Колотиенко С.Д. Установка для исследования изнашивания наплавочных материалов при трении качения // Вестник Дон. гос. техн. ун-та. 2011. Т. 11. № 9 (60). С. 1646-1650.
  14. Мукутадзе М.А., Гармонина А.Н., Приходько В.М. Расчетная модель упорного подшипника с пористым покрытием на поверхности направляющей // Вестник Дон. гос. техн. ун-та. 2017. № 3 (90). С. 70-77.
  15. Полешкин М.С., Сидоренко В.С. Нестационарные гидромеханические характеристики проточной части управляющих устройств клапанного типа // Вестник Дон. гос. техн. ун-та. 2012. Т. 9, спец. вып. С. 93-102.

Supplementary files

Supplementary Files
Action
1. JATS XML


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies