On the Existence, Method of Construction and Some Properties of (n - 2)-Structured Matrices Generating Bijective Transformations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article considers a new type of matrices that define bijective coordinate-threshold mappings - (n - 2)- structured matrices. It is proved that different matrices define different transformations, all (n - 2)-structured matrices of order 4 are described. For an arbitrary n ∈ ℕ, n classes of (n - 2)-structured matrices are specified, it is proved that the transformations specified by these matrices generate the group S2 S2n - 1. It is shown that the matrix transposed to the given one generates the inverse transformation.

Full Text

Restricted Access

About the authors

Sergey A. Kononov

Secure Information Technology Assistance Foundation

Email: cononovsa@yandex.ru
Moscow, Russian Federation

References

  1. Belevitch V. Theorem of 2n terminal networks with application to conference telephony // Electrical Communication. 1950. Vol. 26. Pp. 231-244.
  2. Goethals J.M., Seidel J.J. Orthogonal matrices with zero diagonal // Canadian Journal of Mathematic. 1967. Vol. 19. Pp. 1001-1010.
  3. Burdelev A.V. Questions of independence threshold equiprobable Boolean functions. Forestry Bulletin. 2009. Vol. 3. Pp.116-119. (In Rus.)
  4. Burdelev A.V. Simplification of criterion Huffman for monotonous self-dual Boolean functions. Forestry Bulletin. 2010. No. 6. Pp. 178-183. (In Rus.)
  5. Glukhov M.M., Zubov A.Y. About lengths of the symmetric and alternating permutation groups via the systems of various generators. Mathematical Problems of Cybernetics. 1999. No. 8. Pp. 5-32. (In Rus.)
  6. Gluhov M.M. On numerical parameters associated with the definition of finite groups by systems of generating elements. Papers on Discrete Mathematics. 1997. Vol. 1. Pp. 43-66. (In Rus.)
  7. Glukhov M.M., Elizarov V.P., Nechaev A.A. Algebra. Moscow: Lan, 2015.
  8. Dertouzos М.L. Threshold logic: A synthesis approach. Cambridge, Massachusetts: MIT Press, 1965.
  9. Nikonov V.G., Zobov A.I. About possibility of using fractal models in data security system construction. Computantional Nanotechnology. 2017. No. 1. Pp. 39-48. (In Rus.)
  10. Nikonov V.G., Litvinenko V.S. Geometrical approach to the argumentum of bijection of one coordinate-threshold reflection. Computantional Nanotechnology. 2015. No. 1. Pp. 26-31. (In Rus.)
  11. Nikonov V.G., Litvinenko V.S. About bijectivity of transformations determined by quasi-hadamard matrixes. Computantional Nanotechnology. 2016. No. 1. Pp. 6-13. (In Rus.)
  12. Nikonov V.G, Sidorov Е.С. About the possibility of one-to-one mappings’ representation by the quasi-hadamard matrixes. Forestry Bulletin. 2009. No. 2. Pp. 155-158. (In Rus.)
  13. Pogorelov B.A. Permutation group theory. Moscow, 2019.
  14. Hall M. The theory of groups. Moscow, 1962.

Supplementary files

Supplementary Files
Action
1. JATS XML