Magnetic Properties of Chiral Copper Nanotubes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The electronic band structures of chiral copper nanotubes are calculated by the method of linearized augmented cylindrical waves. The number of channels of ballistic transport and the values of the magnetic field arising in chiral tubes when a direct electric current passes through them are determined. The results showed that chiral copper nanotubes are promising materials for creating nanosolenoids with desired properties.

Full Text

Restricted Access

About the authors

Dmitry O. Krasnov

Mendeleev University of Chemical Technology of Russia

Email: drygodo@gmail.com
expert at the Department of Operation of Automated Information Systems Moscow, Russian Federation

Andrey V. Zhensa

Mendeleev University of Chemical Technology of Russia

Email: zhensa.a.v@muctr.ru
Cand. Sci. (Eng.), Associate Professor; associate professor at the Department of Information Computer Technologies Moscow, Russian Federation

Eleonora M. Koltsova

Mendeleev University of Chemical Technology of Russia

Email: koltsova.e.m@muctr.ru
Dr. Sci. (Eng.), Professor; Head at the Department of Information Computer Technologies Moscow, Russian Federation

References

  1. Murphy C.J., Sau T.K., Gole A.M. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B. 2005. Vol. 109. Pp. 13857-13870. URL: https://doi.org/10.1021/jp0516846
  2. Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. Pp. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
  3. Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. Pp. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
  4. Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
  5. Hu J., Bando Y., Golberg D. et al. Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. Angewandte Chemie. 2003. Vol. 115. Pp. 3617-3621. URL: https://doi.org/10.1002/ange.200351001
  6. Li Y., Bando Y., Golberg D. Single-crystalline In2O3 nanotubes filled with In. Advanced Materials. 2003. Vol. 15. Pp. 581-585. URL: https://doi.org/10.1002/adma.200304539
  7. Liu S.M., Gan L.M., Liu L.H. et al. Synthesis of single-crystalline TiO2 nanotubes. Chemistry of Materials. 2002. Vol. 14. Pp. 1391-1397. URL: https://doi.org/10.1021/cm0115057
  8. Hu J.Q., Li Q., Meng X.M. et al. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chemistry of Materials. 2003. Vol. 15. Pp. 305-308. URL: https://doi.org/10.1021/cm020649y
  9. Bao J., Xu D., Zhou Q. et al. An array of concentric composite nanostructure of metal nanowires encapsulated in zirconia nanotubes: Preparation, characterization, and magnetic properties. Chemistry of Materials. 2002. Vol. 14. Pp. 4709-4713. URL: https://doi.org/10.1021/cm0201753
  10. Harada M., Adachi M. Surfactant-mediated fabrication of silica nanotubes. Advanced Materials. 2000. Vol. 12. Pp. 839-841. URL: https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<839::AID-ADMA839>3.0.CO;2-9
  11. Bong D.T., Clark T.D., Granja J.R. et al. Self-assembling organic nanotubes. Angewandte Chemie International Edition. 2001. Vol. 40. Pp. 988-1011. URL: https://doi.org/10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N
  12. Tenne R. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angewandte Chemie International Edition. 2003. Vol. 42. Pp. 5124-5132. URL: https://doi.org/10.1002/anie.200301651
  13. Dai L., Patil A., Gong X. et al. Aligned nanotubes. Chem. Phys. Chem. 2003. Vol. 4. Pp. 1150-1169. URL: https://doi.org/10.1002/cphc.200300770
  14. Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
  15. Xu F., Sadrzadeh A., Xu Z. et al. XTRANS: An electron transport package for current distribution and magnetic field in helical nanostructures.Computational Materials Science. 2014. Vol. 83. Pp. 426-433. URL: https://doi.org/10.1016/j.commatsci.2013.11.043
  16. Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
  17. Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
  18. Duan Y.N., Zhang J.M., Xu K.W. Structural and electronic properties of chiral single-wall copper nanotubes. Science China Physics, Mechanics and Astronomy. 2014. Vol. 57. Pp. 644-651. URL: https://doi.org/10.1007/s11433-013-5387-8
  19. Senger R.T., Dag S. & Ciraci S. Chiral single-wall gold nanotubes. Physical Review Letters. 2004. Vol. 93. Pp. 196807. URL: https://doi.org/10.1103/PhysRevLett.93.196807
  20. Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145
  21. Mitran T.L., Nemnes G.A. Helical graphite metamaterials for intense and locally controllable magnetic fields. RSC Advances. 2017. Vol. 7. Pp. 49041-49047. URL: https://doi.org/10.1039/C7RA08247A
  22. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281

Supplementary files

Supplementary Files
Action
1. JATS XML


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies