Магнитные свойства хиральных медных нанотрубок

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом линеаризованных присоединенных цилиндрических волн рассчитаны электронные зонные структуры хиральных медных нанотрубок. Определено количество каналов баллистического транспорта и значения магнитного поля, возникающего в хиральных трубках при прохождении через них постоянного электрического тока. Результаты показали, что хиральные нанотрубки из меди являются перспективными материалами для создания наносоленоидов с заданными свойствами.

Полный текст

Доступ закрыт

Об авторах

Дмитрий Олегович Краснов

Российский химико-технологический университет имени Д.И. Менделеева

Email: drygodo@gmail.com
эксперт отдела эксплуатации автоматизированных информационных систем Москва, Российская Федерация

Андрей Вячеславович Женса

Российский химико-технологический университет имени Д.И. Менделеева

Email: zhensa.a.v@muctr.ru
кандидат технических наук, доцент; доцент кафедры информационных компьютерных технологий Москва, Российская Федерация

Элеонора Моисеевна Кольцова

Российский химико-технологический университет имени Д.И. Менделеева

Email: koltsova.e.m@muctr.ru
доктор технических наук, профессор; заведующая кафедрой информационных компьютерных технологий Москва, Российская Федерация

Список литературы

  1. Murphy C.J., Sau T.K., Gole A.M. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B. 2005. Vol. 109. Pp. 13857-13870. URL: https://doi.org/10.1021/jp0516846
  2. Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. Pp. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
  3. Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. Pp. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
  4. Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
  5. Hu J., Bando Y., Golberg D. et al. Gallium nitride nanotubes by the conversion of gallium oxide nanotubes. Angewandte Chemie. 2003. Vol. 115. Pp. 3617-3621. URL: https://doi.org/10.1002/ange.200351001
  6. Li Y., Bando Y., Golberg D. Single-crystalline In2O3 nanotubes filled with In. Advanced Materials. 2003. Vol. 15. Pp. 581-585. URL: https://doi.org/10.1002/adma.200304539
  7. Liu S.M., Gan L.M., Liu L.H. et al. Synthesis of single-crystalline TiO2 nanotubes. Chemistry of Materials. 2002. Vol. 14. Pp. 1391-1397. URL: https://doi.org/10.1021/cm0115057
  8. Hu J.Q., Li Q., Meng X.M. et al. Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes. Chemistry of Materials. 2003. Vol. 15. Pp. 305-308. URL: https://doi.org/10.1021/cm020649y
  9. Bao J., Xu D., Zhou Q. et al. An array of concentric composite nanostructure of metal nanowires encapsulated in zirconia nanotubes: Preparation, characterization, and magnetic properties. Chemistry of Materials. 2002. Vol. 14. Pp. 4709-4713. URL: https://doi.org/10.1021/cm0201753
  10. Harada M., Adachi M. Surfactant-mediated fabrication of silica nanotubes. Advanced Materials. 2000. Vol. 12. Pp. 839-841. URL: https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<839::AID-ADMA839>3.0.CO;2-9
  11. Bong D.T., Clark T.D., Granja J.R. et al. Self-assembling organic nanotubes. Angewandte Chemie International Edition. 2001. Vol. 40. Pp. 988-1011. URL: https://doi.org/10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N
  12. Tenne R. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angewandte Chemie International Edition. 2003. Vol. 42. Pp. 5124-5132. URL: https://doi.org/10.1002/anie.200301651
  13. Dai L., Patil A., Gong X. et al. Aligned nanotubes. Chem. Phys. Chem. 2003. Vol. 4. Pp. 1150-1169. URL: https://doi.org/10.1002/cphc.200300770
  14. Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
  15. Xu F., Sadrzadeh A., Xu Z. et al. XTRANS: An electron transport package for current distribution and magnetic field in helical nanostructures.Computational Materials Science. 2014. Vol. 83. Pp. 426-433. URL: https://doi.org/10.1016/j.commatsci.2013.11.043
  16. Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
  17. Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
  18. Duan Y.N., Zhang J.M., Xu K.W. Structural and electronic properties of chiral single-wall copper nanotubes. Science China Physics, Mechanics and Astronomy. 2014. Vol. 57. Pp. 644-651. URL: https://doi.org/10.1007/s11433-013-5387-8
  19. Senger R.T., Dag S. & Ciraci S. Chiral single-wall gold nanotubes. Physical Review Letters. 2004. Vol. 93. Pp. 196807. URL: https://doi.org/10.1103/PhysRevLett.93.196807
  20. Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145
  21. Mitran T.L., Nemnes G.A. Helical graphite metamaterials for intense and locally controllable magnetic fields. RSC Advances. 2017. Vol. 7. Pp. 49041-49047. URL: https://doi.org/10.1039/C7RA08247A
  22. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах