Interrelation and Interpretation of effects in quantum mechanics and classical physics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Quantum mechanics based on the probabilistic approach provides a powerful tool for accurate prediction and interpretation of quantum phenomena, allowing statistically sound predictions about the behavior of microparticles and quantum systems. This statement emphasizes the probabilistic nature of quantum mechanics, its applicability to quantum phenomena and microparticles, as well as the statistical nature of its predictions when applied to the macro effects of classical physics. In addition, the role of statistics and probability in various fields of science, such as particle physics, thermodynamics, biology, sociology, psychology, economics and finance, is discussed. The philosophical implications of the probabilistic approach and the associated limitations and challenges are also considered.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Rustam Rakhimov

Institute of Materials Science of the Academy of Science of Uzbekistan

Хат алмасуға жауапты Автор.
Email: rustam-shsul@yandex.com
ORCID iD: 0000-0001-6964-9260
SPIN-код: 3026-2619

Dr. Sci. (Eng.), Head, Laboratory No. 1

Өзбекстан, Tashkent

Әдебиет тізімі

  1. Schrödinger E. New paths in physics: Articles, and speeches. Moscow: Nauka, 1971.
  2. Kaganov M. How quantum mechanics describes the microworld. Part II. Quantum. 2006. No. 3. Pp. 6–14. (In Rus.)
  3. Bardeen J., Cooper L.N., Schrieffer J.R. Theory of superconductivity. Physical Review. 1957. No. 108 (5). Pp. 1175–1204.
  4. Bardeen J., Cooper L.N., Schrieffer J.R. Microscopic theory of superconductivity. Physical Review. 1957. No. 106 (1). Pp. 162–164.
  5. Chirkov A.G., Ageev A.N. On the nature of the Aharonov–Bohm effect. Journal of Technical Physics. 2001. Vol. 71. Issue 2. Pp. 16–22. (In Rus.)
  6. Tucker J., Rampton W. Hypersound in solid state physics. Moscow, 1975.
  7. Ultrasound: A little encyclopedia. I.P. Golyamina (ed.). Moscow, 1979.
  8. Handbook of acoustics. M.J. Crocker (ed.). N.Y., 1998.
  9. Devos A. Phonons in nanoscale objects. In: Nanophysics, principles and methods. K.D. Sattler (ed.). 2010.
  10. Maris H.J. Quantum acoustics. In: McGraw-Hill Encyclopedia of science & technology online. 2012. doi: 10.1036/1097-8542.562350.
  11. Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. doi: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
  12. Rakhimov R.Kh. Pulsed tunnel effect: fundamental principles and application prospects. Computational Nanotechnology. 2024. Vol. 11. No. 1. Pp. 193–213. (In Rus.) doi: 10.33693/2313-223X-2024-11- 1-193-213. EDN: EWSBUT.
  13. Witteman V. CO2 laser. Moscow: Mir, 1990. 360 p.
  14. Goldansky V.I., Trakhtenberg L.I., Flerov V.N. Tunneling phenomena in chemical physics. Moscow: Nauka, 1986. 296 p.
  15. Blokhintsev D.I. Fundamentals of quantum mechanics. 4th ed. Moscow, 1963.
  16. Landau L.D., Lifshitz E.M. Quantum mechanics (nonrelativistic theory). 3rd ed., rev. and suppl. Moscow: Nauka, 1974. 752 p.
  17. Razavy M. Quantum theory of tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 с. ISBN: 9814525006.
  18. Rakhimov R.Kh., Ermakov V.P., Rakhimov M.R. Phonon mechanism of transformation in ceramic materials. Computational Nanotechnology. 2017. No. 4. Pp. 21–35. (In Rus.)
  19. Rakhimov R.Kh., Hasanov R.Z., Yermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator. Computational Nanotechnology. 2018. No. 4. Pp. 57–70.
  20. Rakhimov R.Kh., Hasanov R.Z., Ermakov V.P. Frequency characteristics of the resonant oscillation generator. Computational Nanotechnology. 2017. No. 4. Pp. 6–13. (In Rus.)
  21. Rakhimov R.Kh. Features of the synthesis of functional ceramics with a complex properties by the radiation method. Part 8: Fundamentals of the theory of resonance therapy using the method of R. Rakhimov (the INFRA R method). Computational Nanotechnology. 2016. No. 4. Pp. 132–135. (In Rus.)
  22. Rakhimov R.Kh., Saidov M.S., Ermakov V.P. Features of the synthesis of functional ceramics with a set of specified properties by the radiation method. Part 5: The mechanism of pulse generation by functional ceramics. Computational Nanotechnology. 2016. No. 2. Pp. 81–93. (In Rus.)
  23. Rakhimov R.Kh., Ermakov V.P. Prospects for solar energy: The role of modern solar technologies in hydrogen production. Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 11–25. (In Rus.) doi: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL
  24. Rakhimov R.Kh., Rashidov H.K., Ernazarov M. Physical methods of influence in the enrichment of technogenic and ore raw materials. Processing of International Conference “Fundamental and Applied Problems of Modern Physics” (October 19–21, 2023). Pp. 49–51.
  25. Popov V.S. Tunneling and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory). Uspekhi Fizicheskikh Nauk. 2004. Vol. 174. No. 9. Pp. 921–955. (In Rus.)
  26. Fedorov M.V. Keldysh’s work “Ionization in the field of a strong electromagnetic wave” and modern physics of interaction of atoms with a strong laser field. J. Exp. Theor. Phys. 2016. Vol. 149. No. 3. Pp. 522–529. (In Rus.)
  27. Ammosov M.V., Delone N.B., Krainov V.P. Interaction of Atoms with Intense Radiation. Usp. Phys. Nauk. 1986. Vol. 148. No. 6. (In Rus.)
  28. Nikishov A.I., Ritus V.I. Kinetics of multiphoton processes in strong radiation. J. Exp. Theor. 1966. Vol. 50. No. 4. (In Rus.)
  29. Rees H. Calculations of multiphoton ionization of atoms in a strong laser field. Phys. Rev. A. 1980. Vol. 22. No. 5.
  30. Korkum P.B. High harmonics using strong laser fields. Phys. Rev. Lett. 1993. Vol. 71. No. 11.
  31. Meshkov M.D. Models of pulsed tunneling phenomena in the interaction of a strong light field with atoms. JETP. 1999. Vol. 116. No. 4. (In Rus.)
  32. Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory. Phys. Rev. A. 2014. Vol. 90. No. 6.
  33. Dovgyallo L., Denisov S., Hange P. Tunneling in the time domain. Physical Review Letters. 2023. Vol. 130. Issue 5. Pp. 050401–050406.
  34. Föhlisch A., Slyk T., Trzeciakowski W. Probing the dynamics of quantum tunneling with ultrafast pulses. Nature Photonics. 2022. Vol. 17. Issue 2. Pp. 120–125.
  35. Makhlin Yu., Schön G., Shnirman A. Macroscopic quantum tunneling: From Josephson junctions to Bose–Einstein condensates. Reviews of Modern Physics. 2001. Vol. 73. Issue 2. Pp. 357–400. (In Rus.)
  36. Efros Sh., Condon J. Quantum tunneling in complex systems: A semiclassical approach. World Scientific, 2018. 532 p.
  37. Tunneling phenomena in chemical physics. R. Levin (ed.). CRC Press, 2017. 456 p.
  38. Schenkel B. Quantum tunneling in mesoscopic systems. World Scientific, 2013. 408 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML