Construction of a Reversible Full-cycle Transformation in a Threshold Basis
- Авторлар: Zobov A.I.1, Nikonov V.G.2
- 
							Мекемелер: 
							- Russian Academy of Natural Sciences
- Foundation for the Promotion of Secure Information Technologies
 
- Шығарылым: Том 10, № 2 (2023)
- Беттер: 36-41
- Бөлім: METHODS AND SYSTEMS OF INFORMATION PROTECTION, INFORMATION SECURITY
- URL: https://journals.eco-vector.com/2313-223X/article/view/568074
- DOI: https://doi.org/10.33693/2313-223X-2023-10-2-36-41
- EDN: https://elibrary.ru/BHHIVN
- ID: 568074
Дәйексөз келтіру
Аннотация
The article describes a class of full-cycle transformations in the threshold basis, defined by matrices of coefficients of linear forms, and proves that the definition of the inverse transformation is carried out using a system of threshold functions, the coefficients of which form the transposed matrix with respect to the original one.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
Anton Zobov
Russian Academy of Natural Sciences
							Хат алмасуға жауапты Автор.
							Email: zobowai@gmail.com
				                					                																			                								
research employee of Foundation for the Promotion of Secure Information Technologies
Ресей, MoscowVladimir Nikonov
Foundation for the Promotion of Secure Information Technologies
														Email: zobowai@gmail.com
				                					                																			                								
Doctor of Engineering, Professor; member at the Presidium of the Russian Academy of Natural Sciences
Ресей, MoscowӘдебиет тізімі
- Zobov A.I., Nikonov V.G. On the possibility of applying fractal models in the construction of information security systems. Comp. nanotechnol. 2017. No. 1. Pp. 39–49. (In Rus.)
- Logachev O.A., Salnikov A.A., Smyshlyaev S.V., Yashchenko V.V. Boolean functions in coding theory and cryptography. 2nd ed., add. Moscow: MCCME, 2012. 584 p.
- Logachev O.A., Fedorov S.N., Yashchenko V.V. Boolean functions as points on the hypersphere in Euclidean space. Discrete Mathematics. 2018. Vol. 30. No. 1. Pp. 39–55. (In Rus.)
- Nikonov V.G., Sarantsev A.V. Methods for compact implementation of bijective mappings defined by regular systems of identical Boolean functions. Bulletin of the Peoples’ Friendship University of Russia. Series: Applied Mathematics and Industrial Mathematics. 2003. Vol. 2. No. 1. Pp. 94–105. (In Rus.)
- Yablonsky S.V. Introduction to discrete mathematics: textbook for universities. 2nd ed., rev. and add. Moscow: Nauka; Chief Ed. of Phys.-Math. Lit. 384 p.
Қосымша файлдар
 
				
			 
						 
						 
						 
						 
					

 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді