Application of numerical methods for optimizing visual elements in e-commerce

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The article discusses the use of numerical methods to optimize the design elements of product cards. The discount block, one of the key elements significantly influencing sales, is selected as the object of study. The aim of the research is to improve the click-through rate (CTR) of product cards by analyzing and optimizing visual parameters such as color, font size, block placement, discount format, and device type. To achieve this goal, a regression model was developed to predict CTR for new parameter combinations without the need for full-cycle testing and to evaluate the significance of the analyzed parameters. The results show that the most impactful factors on CTR are background color, font size, and the placement of the discount block. The proposed approach reduces the number of required tests, accelerates the optimization process, and can be adapted to other design elements, such as call-to-action buttons or stock availability indicators.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Andrei Chmelev

Wildberries LLC

Хат алмасуға жауапты Автор.
Email: an.chmelev@gmail.com

senior full stack engineer, technical lead, specialist in applied mathematics and computer science, mathematician, system programmer

Ресей, Moscow

Natalia Grineva

Financial University under the Government of the Russian Federation

Email: ngrineva@fa.ru
ORCID iD: 0000-0001-7647-5967

Cand. Sci. (Econ.), associate professor, Department of Information Technology

Ресей, Moscow

Әдебиет тізімі

  1. Ku E., Lau T. The impact of discounts on consumer behavior: A comprehensive review. Journal of Retailing and Consumer Services. 2015.
  2. Lee J., Chen C. The role of visual parameters in marketing: A regression analysis approach. Journal of Marketing Research. 2020.
  3. Box G.E.P., Hunter W.G., Hunter J.S. Statistics for experimenters: Design, innovation, and discovery. John Wiley & Sons, 1978.
  4. Montgomery D.C. Design and analysis of experiments. 9th ed. Wiley, 2017.
  5. Bishop C.M. Pattern recognition and machine learning. Springer, 2006.
  6. Hastie T., Tibshirani, R., Friedman J. The elements of statistical learning: Data mining, inference, and prediction. Springer, 2009.
  7. Goodfellow I., Bengio Y., Courville A. Deep learning. MIT Press. 2016.
  8. Pedregosa F., Varoquaux G., Gramfort A. et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research. 2011. No. 12. Pp. 2825–2830.
  9. Handbook on D-optimal design. National Institute of Standards and Technology (NIST), 2017. URL:
  10. McKinney W. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython. O’Reilly Media, 2017.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Dependence of the maximum VIF on the number of experiments in a fractional factorial experiment

Жүктеу (95KB)
3. Fig. 2. Distribution of CTR values based on the analysis of discount design parameters

Жүктеу (54KB)
4. Fig. 3. Impact of factors on CTR based on regression analysis results

Жүктеу (273KB)
5. Fig. 4. Residuals vs Fitted Values Plot

Жүктеу (71KB)