Tri-State+ Communication Symmetry Using the Algebraic Approach


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This work uses the algebraic approach to show how we communicate when applying the quantum mechanics (QM) concept of coherence, proposing tri-state+ in quantum computing (QC). In analogy to Einstein’s stimulated emission, when explaining the thermal radiation of quantum bodies in communication, this work shows that one can use the classical Information Theory by Shannon (with two, random logical states only, “0” and “1”, emulating a relay), and add a coherent third truth value Z, as a new process that breaks the Law of the Excluded Middle (LEM). Using a well-known result in topology and projection as a “new hypothesis” here, a higher dimensional state can embed in a lower-dimensional state. This means that any three-valued logic system, breaking the LEM, can be represented in a binary logical system, obeying the LEM. This satisfies QC in behavior, offering multiple states at the same time in GF(3m), but frees the implementation to use binary logic and LEM. This promises to allow indeterminacy, such as contingency, reference failure, vagueness, majority voting, conditionals, computability, the semantic paradoxes, and many more, to play a role in logic synthesis, with a much better resolution of indeterminate contributions to obtain coherence and help cybersecurity. We establish a link between Einstein’s and Shannon’s theories in QM, hitherto not reported, and use it to provide a model for QC without relying on external devices (i.e., quantum annealing), or incurring in decoherence. By focusing on adequate software, this could replace the emphasis in QC, from hardware to software.

Texto integral

Acesso é fechado

Sobre autores

E. Gerck

Planalto Research

Email: ed@gerck.com
PhD (Physics) Mountain View, CA, USA

Bibliografia

  1. Bouwmeester D. The physics of quantum information: Quantum cryptography, quantum teleportation, quantum computation. A. Ekert, A. Zeilinger (eds.). Springer Publishing Company, Incorporated, 2010.
  2. Awschalom D., Berggren K.K., Bernien H. et al. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum. American Physical Society. 2021. Vol. 2. No. 1. Pp. 17002-17023. https://link.aps.org/doi/10.1103/PRXQuantum.2.017002
  3. Li B., Yu Z.H., Fei S.M. Geometry of quantum computation with qutrits. Sci. Rep. 2013. No. 3. P. 2594. https://doi.org/10.1038/srep02594
  4. Kiktenko E.O., Nikolaeva A.S., Fedorov A.K. Qudit-based quantum information processing. Quantum Informatics 2021. Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University, 2021.
  5. Yuchen Wang, Zixuan Hu, Sanders B.C., Kais S. Qudits and high-dimensional quantum computing. Frontiers in Physics. 2020. Vol. 8. P. 479. https://www.frontiersin.org/article/10.3389/fphy.2020.589504
  6. Gerck E. Presentation: Tri-State+ (or more) quantum information model. Quantum Informatics 2021, Faculty of Computational Mathematics and Cybernetics of Lomonosov Moscow State University, 2021.
  7. Gokhale P., Baker J.M., Duckering C. et al. Extending the frontier of quantum computers with qutrits. IEEE Micro. 2020. Vol. 40. No. 3. Pp. 64-72, 1. https://doi.org/10.1109/MM.2020.2985976
  8. Kartalopoulos S.V. K08: a generalized bb84/b92 protocol in quantum cryptography. Security Comm. Networks. 2009. No. 2. Pp. 686-693. Wiley InterScience, 2009.
  9. Shannon C.E. A mathematical theory of communication. Bell System Technical Journal. 1948. No. 27. Pp. 623-656.
  10. Schrödinger E. Collected papers on wave mechanics. International Series of Monographs on Physics. Book 27. Clarendon Pess, 1982.
  11. Grib A., Rodrigues W.A.Jr. Copenhagen interpretation. In: Nonlocality in quantum physics. Boston, MA: Springer, 1999. https://doi.org/10.1007/978-1-4615-4687-0_5
  12. Howard D. Who invented the “copenhagen interpretation”? A study in mythology, Philosophy of Science. 2004. Vol. 71. No. 5. Pp. 669-682.
  13. Brillouin L. Science and information theory. N.Y.: Academic Press, 1956.
  14. Feigenbaum M.J. Universality in complex discrete dynamics. Los Alamos Theoretical Division Annual Report 1975-1976. 1976.
  15. Barzel B., Barabasi A.-L. Universality in network dynamics. Nature Physics. 2013. Vol. 9, Pp. 673-768.
  16. Einstein A. Strahlungs-Emission und Absorption nach der Quantentheorie. Deutsche Physikalische Gesellschaft. Jan. 1916. Vol. 18. Pp. 318-323.
  17. Einstein A. Zur Quantentheorie der Strahlung. Physikalische Zeit-schrift. Jan. 1917. Vol. 18. Pp. 121-128.
  18. Shannon C.E., Weaver W. The mathematical theory of communication. University of Illinois Press, 1949. ISBN 978-0-252-72548-7.
  19. Ahlswede R., Ning Cai, Shuo-Yen Robert Li, Yeung R.W. Network information flow. IEEE Transactions on Information Theory. 2000. Vol. 46. No. 4. Pp. 1204-1216. http://www.cs.cornell.edu/courses/cs783/2007fa/papers/acly.pdf
  20. Mea Wang, Baochun Li. How practical is network coding? 14th IEEE International Workshop on Quality of Service. 2006. Pp. 274-278.
  21. Jalal Feghhi, Jalil Feghhi, Williams P. Trust points, by Ed Gerck. In: Digital certificates: Applied internet security. Addison-Wesley, 1998.
  22. Frege G. Sense and Reference. The Philosophical Review. 1948. Vol. 57. No. 3. Pp. 209-230.
  23. Carlson A.B. Communication systems. McGraw Hill Kogakusha, Ltd., 1968.
  24. Morris M.M., Ciletti M.D. Digital design: With an introduction to the verilog HDL, VHDL, and SystemVerilog. 2018.
  25. SystemVerilog. SystemVerilog is a standard hardware description language (HDL) and hardware verification language used to model, design, simulate, test, validate, and implement electronic systems. IEEE. 2021. No. 1800.
  26. Cobreros P., Egre P., Ripley D., Rooij R. Foreword: Threevalued logics and their applications. Journal of Applied Non-Classical Logics. 2014. No. 24. Pp. 1-2, 1-11. https://doi.org/10.1080/11663081.2014.909631
  27. Ozhigov Y.I. Constructive physics (physics research and technology). Ed. UK: Nova Science Pub Inc, 2011. ISBN 1612095534.
  28. Jones D.W. Standard ternary logic. 2016. http://homepage.cs.uiowa.edu/ jones/ternary/logic.shtml
  29. Actel Corporation. Implementing three-state and bidirectional buses with multiplexers in Actel FPGAs. Application Note AC119, 1997.
  30. Gerck E. The witness-voting system. In: Towards trustworthy elections. Springer Verlag, 27, 2010. Pp. 1-36.
  31. Plank J. Greenan K., Miller E.L. Screaming fast galois field arithmetic using Intel SIMD instructions. 11th USENIX Conference on File and Storage Technologies (FAST’13). 2013. Pp. 299-306.
  32. Khrennikov A.Y. Universality in network dynamics. Springer Science Business Media. 2013. Vol. 427.
  33. Gerck E. Coherent effects in internet security and traffic: CDoS. Cook Report on Internet. 2000. Vol. IX. No. 1. Pp. 25-26. ISSN 1071-6327. https://www.researchgate.net/publication/351762323/
  34. Gerck E. Coherent effects in internet security and traffic: An alternative model. Cook Report on Internet. 2000. Vol. IX. No. 1. Pp. 26-27. ISSN 1071-6327. https://www.researchgate.net/publication/351762040/

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies