About Some Properties of Quasi-hadamard Matrices Defining Bijective Transformations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article continues studies of bijective mapping determined by quasi-hadamard matrices started in work [8]. It is proved that for different quasi-hadamard martices there are different mappings. All quasi-hadamard matrices of orders 4 and 8 are also described.

Texto integral

Acesso é fechado

Sobre autores

Vladimir Nikonov

Presidium of Russian Academy of Natural Sciences

Email: nikonovu@yandex.ru
Dr. Sci. (Eng.); a member of the Presidium of Russian Academy of Natural Sciences. Moscow, Russian Federation

Sergey Kononov

Secure Information Technology Assistance Foundation

Email: cononovsa@yandex.ru
Moscow, Russian Federation

Bibliografia

  1. Belevitch V. Theorem of 2n terminal networks with application to conference telephony // Electrical Communication. 1950. Vol. 26. Pp. 231-244
  2. Goethals J.M., Seidel J.J. Orthogonal matrices with zero diagonal // Canadian Journal of Mathematic. 1967. Vol. 19. Pp. 1001-1010.
  3. Burdelev A.V. Questions of independence threshold equiprobable Boolean functions. Forestry Bulletin. 2009. No. 3. Pp.116-119. (In Rus.)
  4. Burdelev A.V. Simplification of criterion Huffman for monotonous self-dual Boolean functions. Forestry Bulletin. 2010. No. 6. Pp.178-183. (In Rus.)
  5. Glukhov M.M., Elizarov V.P., Nechaev A.A. Algebra. Moscow: Lan, 2015.
  6. Dertouzos М.L. Threshold logic: A synthesis approach. Cambridge, Massachusetts: MIT Press, 1965.
  7. Nikonov V.G., Zobov A.I. About possibility of using fractal models in data security system construction. Computantional Nanotechnology. 2017. No. 1. Pp. 39-48. (In Rus.)
  8. Nikonov V.G., Litvinenko V.S. Geometrical approach to the argumentum of bijection of one coordinate-threshold reflection. Computantional Nanotechnology. 2015. No. 1. Pp. 26-31. (In Rus.)
  9. Nikonov V.G., Litvinenko V.S. About bijectivity of transformations determined by quasi-hadamard matrixes. Computantional Nanotechnology. 2016. No. 1. Pp. 6-13. (In Rus.)
  10. Nikonov V.G, Sidorov Е.С. About the possibility of one-to-one mappings’ representation by the quasi-hadamard matrixes. Forestry Bulletin. 2009. No. 2. Pp. 155-158. (In Rus.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML