Scaling Models of Electrical Properties of Photo- and Beta-Converters with Nano-Heterojunctions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The new methodology is developed and the computer simulation of scaling the electrical properties of nanochips-generators of a semiconductor energy converter based on nanoscale contact heterojunctions to ensure maximum power is considered. The variant of optimization of the scaling solution is represented by the connection of nanoheterojunctions with an increase in the current density of nonequilibrium carriers and the open circuit voltage. A generalized equivalent scheme for variations of internal properties and identification of experimental data is presented. The influence of the type of scaling and model parameters is analyzed.

Texto integral

Acesso é fechado

Sobre autores

Mikhail Dolgopolov

Samara National Research University named after Academician S.P. Korolev; Samara State Technical University

Email: mikhaildolgopolov68@gmail.com
ORCID ID: 0000-0002-8725-7831

Candidate of Physics and Mathematics, Associate Professor; associate professor at the Department of Higher Mathematics of the Samara State Technical University; Head of the Joint Research Laboratory of Mathematical Physics (NIL-319) of the Samara National Research University named after Academician S.P. Korolev

Rússia, Samara; Samara

Maksim Elisov

Samara National Research University named after Academician S.P. Korolev

Email: maksimelisov2003@gmail.com
ORCID ID: 0009-0001-3097-2703

student at the Samara National Research University named after Academician S.P. Korolev

Rússia, Samara

Sali Rajapov

Institute of Physics and Technology of the Scientific and Production Association “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan

Email: rsafti@mail.ru
ORCID ID: 0000-0002-4615-027X

Doctor of Physics and Mathematics; Chief Researcher of the Semiconductor High-sensitivity Sensors Laboratory of the Institute of Physics and Technology of the Scientific and Production Association “Physics-Sun” of the Academy of Sciences of the Republic of Uzbekistan

Uzbequistão, Tashkent

Alexander Chipura

Samara National Research University named after Academician S.P. Korolev

Autor responsável pela correspondência
Email: al_five@mail.ru
ORCID ID: 0009-0004-0425-0653

student at the Samara National Research University named after Academician S.P. Korolev

Rússia, Samara

Bibliografia

  1. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. Analysis of the efficiency of a solar cell with nano-dimensional hetero transitions. Computational Nanotechnology. 2021. Vol. 8. No. 4. Pp. 42–50. (In Rus.)
  2. Haken H. Synergetics. Berlin-Heidelberg: Springer, 1977.
  3. Shchukin V.A., Ledentsov N.N., Kopev P.S., Bimberg D. Spontaneous ordering of arrays of coherent strained islands. Phys. Rev. Lett. 1995. Vol. 75. No. 16. Pp. 2968–2971.
  4. Ledentsov N.N., Ustinov V.M., Ivanov S.V. et al. Ordered quantum-dot arrays in semiconducting matrices. Uspekhi fizicheskikh nauk. 1996. No. 39. Pp. 393–398.
  5. Imamov E.Z., Muminov R.A., Rakhimov R.Kh. et al. Modeling of the electrical properties of a solar cell with many nano-hetero junctions. Computational Nanotechnology. 2022. Vol. 9. No. 4. Pp. 70–77. (In Rus.)
  6. Chepurnov V.I., Radzhapov S.A., Dolgopolov M.V. et al. Efficiency determination problems for SiC*/Si microstructures and contact formation. Computational Nanotechnology. 2021. No. 3. Pp. 59–68. (In Rus.)
  7. Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V. et al. Experimental investigation of semiconductor structures of the power source based on carbon-14. Physics of Wave Processes and Radio Engineering Systems. 2019. Vol. 22. № 3. Pp. 55–67. (In Rus.)
  8. Physics of semiconductor converters / Acad. of the Russian Academy of Sciences, Prof. A.N. Saburov, Corr. Member, Tatarstan Academy of Sciences, Prof. S.V. Bulyansky (eds.). Moscow: RAS, 2018. 280 p.
  9. Radzhapov S.A., Rakhimov R.Kh., Dzhanklich M. et al. Semiconductor nuclear radiation detectors on the basis of heterojunction structures of Al–αGe–pSi–Au for measurement of low intensive ionizing radiations. Computational Nanotechnology. 2018. No. 3. Pp. 65–67.
  10. Akimchenko A., Chepurnov V., Dolgopolov M. et al. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter. EPJ Web of Conferences. 2017. Vol. 158.
  11. Tsoi B. Patent in the Eurasian Patent Office. EP2405487 A1. 30.08.2012.
  12. Tsoi B. Patent in the World Intellectual Property Organization. № WO 2011/040838 A2 04.07.2011.
  13. Pikus G.E. Fundamentals of the theory of semiconductor devices. Moscow: Nauka, 1965. 448 p.
  14. Rawa M., Calasan M., Abusorrah A. et al. Single diode solar cells–improved model and exact current–voltage analytical solution based on Lambert’s W function. Sensors. 2022. No. 22. P. 4173.
  15. Gurskaya A.V., Dolgopolov M.V., Rajapov S.A., Chepurnov V.I. Contacts for SiC nano-microwatt energy converters. Moscow University Physics Bulletin. 2023. No. 1.
  16. Gurskaya A.V., Chepurnov V.I., Latukhina N.V., Dolgopolov M.V. Method for obtaining a porous layer of Silicon Carbide heterostructure on a Silicon Substrate. Patent of the Russian Federation No. 2653398 publ. 24.01.2018. Byul. No. 3, priority 19.07.2016.
  17. Dolgopolov M.V., Surnin O.L., Chepurnov V.I. Device for generating electric current by converting the energy of radiochemical beta decay of C-14. Patent of the Russian Federation No. 2714690 publ. 19.02.2020. Byul. No. 5.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Equivalent circuit of parallel connected semiconductor converters with nanoscale heterojunctions

Baixar (38KB)
3. Fig. 2. I-V curves for one-, two- and three-diode models

Baixar (83KB)
4. Fig. 3. Scaling scheme for semiconductor converter with nanoheterojunctions.

Baixar (51KB)
5. Fig. 4. Zone energy diagram of the stack

Baixar (65KB)
6. Fig. 5. I-V curves graphs for general equivalent one-three-diode circuits of a photovoltaic element with NHJ and effective resistances on a logarithmic scale along the vertical axis of the current

Baixar (268KB)
7. Fig. 6. I-V and P-V curves for common equivalent one-three-diode circuits

Baixar (115KB)


Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies