Исследование тонких пленок MgAl2O4, осажденных на Si-подложки методом вакуумного термического испарения

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье приведены данные исследования рентгеноструктурных и микроструктурных характеристик тонких пленок алюмомагниевой шпинели MgAl2O4, нанесенных на Si подложки методом вакуумного термического испарения. Пленки MgAl2O4 имеют поликристаллическую ромбическую структуру. Рассчитаны значения параметров элементарной ячейки MgAl2O4. С помощью сканирующей электронной и атомно-силовой микроскопии показано, что пленки MgAl2O4 имеют плотно упакованную, без трещин структуру. Физические характеристики и хорошая адгезия тонких пленок MgAl2O4 к кремниевым подложкам указывает на их возможность использования в приборах опто- и микроэлектроники.

Полный текст

Доступ закрыт

Об авторах

Алена Викторовна Станчик

Государственное научно-производственное объединение «Научно-практический центр Национальной академии наук Беларуси по материаловедению»

Email: alena.stanchik@bk.ru
кандидат физико-математических наук; старший научный сотрудник лаборатории физики полупроводников Минск, Беларусь

Валерий Феликсович Гременок

Государственное научно-производственное объединение «Научно-практический центр Национальной академии наук Беларуси по материаловедению»

Email: gremenok@physics.by
доктор физико-математических наук; заведующий лабораторией физики полупроводников Минск, Беларусь

Екатерина Леонидовна Труханова

Государственное научно-производственное объединение «Научно-практический центр Национальной академии наук Беларуси по материаловедению»

Email: katu-shkak@mail.ru
кандидат физико-математических наук; старший научный сотрудник лаборатории технологии и физики роста кристаллов Минск, Беларусь

Виталий Викторович Хорошко

Белорусский государственный университета информатики и радиоэлектроники

Email: khoroshko@bsuir.by
кандидат технических наук; заведующий кафедрой проектирования информационно-компьютерных систем Минск, Беларусь

Султан Хамидович Сулейманов

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: sultan.suleimanov@gmail.com
кандидат физико-математических наук; заведующий лабораторией высокотемпературных композиционных материалов и покрытий Ташкент, Республика Узбекистан

Валерий Григорьевич Дыскин

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: dyskin@uzsci.net
кандидат технических наук; старший научный сотрудник лаборатории высокотемпературных композиционных материалов и покрытий Ташкент, Республика Узбекистан

Мустафа Умерович Джанклич

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: mustafa.djanklich@gmail.com
кандидат технических наук; старший научный сотрудник лаборатории высокотемпературных композиционных материалов и покрытий Ташкент, Республика Узбекистан

Наталья Александровна Кулагина

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: nataly.kulagina@gmail.com
младший научный сотрудник лаборатории высокотемпературных композиционных материалов и покрытий Ташкент, Республика Узбекистан

Шахбоз Ёркин угли Амиров

Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан

Email: amirov_shaxboz@mail.ru
младший научный сотрудник лаборатории высокотемпературных композиционных материалов и покрытий Ташкент, Республика Узбекистан

Список литературы

  1. Tzing W.S., Tuan W.H. The strength of duplex AlO-ZnAlO composite // J. Mater. Sci. Lett. 1996. Vol. 15. No. 16. Pp. 1395-1396.
  2. Качаев А.А., Гращенков Д.В., Лебедева Ю.Е. и др. Оптически прозрачная керамика (обзор) // Стекло и керамика. 2016. № 4. С. 3-10.
  3. Ji-Guang L., Ikegami T., Jong-Heum L. et al. Fabrication of Translucent Magnesium Aluminum Spinel Ceramics // J. Am. Ceram. Soc. 2000. Vol. 83. No. 11. Pp. 2866-2868.
  4. Ganesh I. A review on magnesium aluminate (MgAlO) spinel: Synthesis, processing and applications // International Materials Reviews. 2013. Vol. 58. No. 2. Pp. 63-112.
  5. Сенина М.О., Лемешев Д.О. Способы синтеза порошков алюмомагниевой шпинели для получения оптически прозрачной керамики (обзор) // Успехи в химии и химической технологии. 2016. Т. 30. № 7. С. 101-103.
  6. Redfern S.A.T., Harrison R.J., O’Neill H.St.C. et al. Thermodynamics and kinetics of cation ordering in MgAlO spinel up to 1600°C from in situ neutron diffraction // Amer. Mineral. 1999. Vol. 84. No. 3. Pp. 299-310.
  7. Sampath S.K., Kanhere D.J., Pandey R. Electronic structure of spinel oxides: Zinc aluminate and zinc gallate // J. Phys. Condens. Matter. 1999. Vol. 11. Pp. 3635-3644.
  8. Surendran K.P., Bijumon P.V., Mohanan P. et al. (1-x)MgAlO4-xTiO dielectrics for microwave and millimeter wave applications // Appl. Phys. A. 2005. Vol. 81. No. 4. Pp. 823-826.
  9. Valanarasu S., Dhanasekaran V., Karunakaran M. et al. Optical and microstructural properties of sol-gel spin coated MgAl2O4 thin films // Digest Journal of Nanomaterials and Biostructures. 2015. Vol. 10. No. 2. Pp. 643-654.
  10. Ahmad S.M., Hussain T., Ahmad R. et al. Synthesis and characterization of magnesium aluminate (MgAlO) spinel (MAS) thin films // Mater. Res. Express. 2018. Vol. 5. Pp. 016415 (1-9).
  11. Hsu C.H., Lin J.S., Yang H.W. Fabrication and characterization of MgAlO thin films by sol-gel method // Advanced Materials Research. 2011. Vol. 216. Pp. 514-517.
  12. Cabello G., Lillo L., Caro C. et al. A photochemical proposal for the preparation of ZnAl2O4 and MgAl2O4 thin films from β-diketonate complex precursors // Materials Research Bulletin. 2016. Vol. 77. Pp. 212-220.
  13. Siby K., Shajo S., Jose M. et al. Structural and electrical properties of nano-sized magnesium aluminate // Indian Journal of Pure and Applied Physics. 2004. Vol. 42. No. 12. Pp. 926-933.
  14. Radishevskaya N.I., Nazarova A.Yu., Lvov O.V. et al. Synthesis of magnesium aluminate spinel in the MgO-AlO-Al system using the SHS method // Journal of Physics: Conf. Series. 2019. Vol. 1214. Pp. 012019 (1-6).
  15. Liu L. Disproportionation of MgAlO spinel at high pressures and temperatures // Geophysical Research Letters. 1975. Vol. 2. No. 1. Pp. 9-11.
  16. Liu L. A new high-pressure phase of spinel // Earth and Planetary Science Letters. 1978. Vol. 41. № 4. Pp. 398-404.
  17. Reid A.F., Ringwood A.E. Newly observed high pressure transformations in MnO, CaAlO, and ZrSiO // Earth and Planetary Science Letters. 1969. Vol. 6. No. 3. Pp. 205-211.
  18. Irifune T., Fujino K., Ohtani E. A new high-pressure form of MgAlO // Nature. 1991. Vol. 349. Issue 6308. Pp. 409-411.
  19. Funamori N., Jeanloz R., Nguyen J.H. et al. High-pressure transformations in MgAlO // Journal of Geophysical Research Atmospheres. 1998. Vol. 103. Pp. 20813-20818.
  20. Catti M. High-pressure stability, structure and compressibility of Cmcm-MgAlO: An ab initio study // Phys. Chem. Minerals. 2001. Vol. 28. Issue 10. Pp. 729-736.
  21. Patterson A. The Scherrer Formula for X-Ray Particle Size Determination // Physical Review. 1939. Vol. 56. Pp. 978-982.
  22. Henry J., Mohanraj K., Sivakumar G. Photoelectrochemical cell performances of CuZnSnSe thin films deposited on various conductive substrates // Vacuum. 2018. Vol. 156. Pp. 172-180.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах