About One Method of Investigation of Lithospheric Plates of Non-Classical Shape and Complex Rheology

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper studies the possibility of assessing the behavior of lithospheric plates of non-classical shape, located on a multilayer base. The study is driven by the need to survey the dynamic properties of such lithospheric plates due to the discovery of the possibility of their resonances. Resonances can affect the seismic state of the territory of the lithospheric plate and provoke earthquakes. As a lithospheric plate, a wedge-shaped plate in the form of a quarter of a plane is being studied. The solution of the problem under consideration is based on the possibility of solving the contact problem in a wedge-shaped region in which a deformable stamp acts. Solutions to boundary value problems for complex rheology dies are then a combination of solutions to boundary value problems for simple rheology dies. In this article, a previously developed new mathematical tool based on the fractal properties of block elements is used to analyze the problem under consideration. Given the practice of applying this approach, it is possible to achieve certain results. In earlier works, to obtain all the parameters describing the behavior of lithospheric plates in a quadrant, it was necessary to study three equations. In this paper, we construct one equation of the second kind with a completely continuous operator, which makes it possible to cover all the necessary parameters. It allows this equation to be approximated by a finite system of algebraic equations and it is rather simple to obtain a dispersion equation. The issues of consideration of lithospheric plates of complex rheologies are discussed.

Авторлар туралы

V. Lozovoy

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

E. Gorshkova

Kuban State University

Krasnodar, Russian Federation

A. Pluzhnik

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

S. Uafa

Kuban State University

Krasnodar, Russian Federation

Әдебиет тізімі

  1. Горячева И.Г., Добычин М.Н. 1988. Контактные задачи трибологии. М., Машиностроение: 256 с.
  2. Papangelo A., Ciavarella M., Barber J.R. 2015. Fracture mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471(2180): 20150271. doi: 10.1098/rspa.2015.0271
  3. Kagan Y.Y. 1997. Are earthquake predictable? Geophysical Journal International. 131(3): 505–525. doi: 10.1111/j.1365-246X.1997.tb06595.x
  4. Kerr R.A. 1979. Earthquake prediction: Mexican quake shows one way to look for the big ones. Science. 203(4383): 860–862. doi: 10.1126/science.203.4383.860
  5. Lu X., Lapusta N., Rosakis A.J. 2007. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. PNAS. 104(48): 18931–18936. doi: 10.1073/pnas.070426810
  6. Mogi K. 1967. Earthquake and fracture. Tectonophysics. 5(1): 35–55. doi: 10.1016/0040-1951(67)90043-1
  7. Almqvist A., Sahlin F., Larsson R., Glavatskih S. 2007. On the dry elasto-plastic contact of nominally flat surfaces. Tribology International. 40(4): 574–579. doi: 10.1016/j. triboint.2005.11.008
  8. Almqvist A. An LCP solution of the linear elastic contact mechanics problem. MATLAB Central File Exchange. URL: https://www.mathworks.com/matlabcentral/fileexchange/43216-an-lcp-solution-of-the-linear-elastic-contact-mechanics-problem (последнее обновление 26.08.2013).
  9. Di Toro G., Han R., Hirose T., De Paola N., Nielsen S., Mizoguchi K., Ferri F., Cocco M., Shimamoto T. 2011. Fault lubrication during earthquake. Nature. 471(7339): 494–498. doi: 10.1038/nature09838
  10. Geller R.J. 1997. Earthquake prediction: a critical review. Geophysical Journal International. 131(3): 425–450. doi: 10.1111/j.1365-246X.1997.tb06588.x
  11. Ворович И.И. 1979. Спектральные свойства краевой задачи теории упругости для неоднородной полосы. Доклады АН СССР. 245(4): 817–820.
  12. Ворович И.И. 1979. Резонансные свойства упругой неоднородной полосы. Доклады АН СССР. 245(5): 1076–1079.
  13. Ворович И.И., Бабешко В.А., Пряхина О.Д. 1999. Динамика массивных тел и резонансные явления в деформируемых средах. М., Наука: 246 с.
  14. Бабешко В.А., Евдокимова О.В., Бабешко О.М. 2021. Фрактальные свойства блочных элементов и новый универсальный метод моделирования. Доклады Российской академии наук. Физика, технические науки. 499(1): 30–35. doi: 10.31857/S2686740021040039
  15. Бабешко В.А., Евдокимова О.В., Бабешко О.М. 2022. О контактных задачах с деформируемым штампом. Проблемы прочности и пластичности. 84(1): 25‒34. doi: 10.32326/1814-9146-2022-84-1-25-34
  16. Бабешко В.А., Евдокимова О.В., Бабешко О.М., Зарецкая М.В., Евдокимов В.С. 2023. О контактной задаче с деформируемым штампом в четверти плоскости. Прикладная математика и механика. 87(2): 303–313. doi: 10.31857/S0032823523020030

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>