INFLUENCE OF LONG-TERM DYNAMICS OF ATMOSPHERIC PRECIPITATION ON THE GENESIS OF STEPPE AND DRY-STEPPE SOILS OF ROSTOV REGION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Taking into account the soil and agroclimatic zoning, comparative characteristics of the distribution by depth of soil soaking in the Rostov Region by atmospheric precipitation and their influence on the depth of occurrence of carbonate new formations were studied. The objects of the study were all zonal soil types widespread in the Rostov Region: ordinary carbonate chernozems, southern chernozems, dark chestnut, chestnut and light chestnut soils. The analysis of the frequency of occurrence of the most common soaking depth was carried out within various zoning objects: agroclimatic regions, climatic subregions, and soil regions. Open sources of information were used to determine the average long-term soaking depth of the profile of the studied soils and to calculate the frequency of occurrence of the most common wetting depth over a 33-year period. Interpolation of soaking depths was carried out using the method of inverse distance weighting using the ArcMap 10.4.1 software. It was revealed that the hydrothermal conditions of soil formation determine the average long-term soaking depth, which decreases from the west to the east within the Rostov Region, correlating with the depths of the appearance of micellar forms of carbonates and the formation of the white-eye horizon. This indicator testifies to clear geographical patterns: the greatest depth of soaking is characteristic of the soils of the south-western part of the Rostov Region and belongs to the seaside regions of the Northern Azov Sea. The soils of the eastern territories of the region are characterized by a less soaking depth, and the further south they are formed, the lower is the indicator. The distribution of soaking depths, taking into account the soil zoning, gives a more detailed picture, which makes it possible to track the dynamics of carbonate migration processes depending on the moisture availability and soil conditions.

About the authors

E. N Minaeva

Academy of Biology and Biotechnology of D.I. Ivanovsky, Southern Federal University

Email: daftbio@mail.ru
Rostov-on-Don, Russian Federation

O. S Bezuglova

Academy of Biology and Biotechnology of D.I. Ivanovsky, Southern Federal University

Rostov-on-Don, Russian Federation

I. V Morozov

Academy of Biology and Biotechnology of D.I. Ivanovsky, Southern Federal University

Rostov-on-Don, Russian Federation

References

  1. Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. 2004. Классификация и диагностика почв России. Смоленск, Ойкумена: 342 с.
  2. Гуларьянц Г.М. 2010. Кальцефильные растения известкового комплекса «Партизанская падь» (Дальнегорский район). Бюллетень Ботанического сада-института ДВО РАН. 7: 94–120.
  3. Mikhailova E.A., Bryant R.B., Galbraith J.M., Wang Y., Post Ch.J., Khokhlova O.S., Schlautman M.A., Cope M.P., Shen Zh. 2018. Pedogenic carbonates and radiocarbon
  4. isotopes of organic carbon at depth in the Russian chernozem. Geosciences. 8(12): 1–16. doi: 10.3390/geosciences8120458
  5. Хохлова О.С., Ковда И.В. 2012. Глава 5. Педогенные карбонаты как индикаторы условий среды голоцена и плейстоцена. В кн.: Палеопочвы, природная среда и методы их диагностики. Новосибирск, ОФСЕТ: 49–60.
  6. Zamanian K., Pustovoytov K., Kuzyakov Ya. 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews. 157: 1–17. doi: 10.1016/j.earscirev.2016.03.003
  7. Голубцов В.А. 2017. Карбонатные новообразования в почвах Байкальского региона: процессы формирования и значение для палеопочвенных исследований. Вестник Томского государственного университета. Биология. 39: 6–28. doi: 10.17223/19988591/39/1
  8. Khokhlova O., Myakshina T. 2018. Dynamics of carbonates in soils under different land use in forest-steppe area of Russia using stable and radiogenic carbon isotope data. Geosciences. 8(4): 1–12. doi: 10.3390/geosciences8040144
  9. Голубцов В.А., Черкашина А.А., Хохлова О.С. 2019. Карбонатный профиль почв байкальского региона: строение, возраст и условия формирования. Почвоведение. 12: 1471–1491. doi: 10.1134/S0032180X19120050
  10. World Soil Resources Reports 106. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. 2015. Rome, Food and Agriculture Organization of the United Nations: 192 p. 10. Агроклиматические ресурсы Ростовской области. 1972. Л., Гидрометеоиздат: 251 с.
  11. Гаврилюк Ф.Я. 1960. Почвенные районы Нижнего Дона. В кн.: Почвенное районирование СССР. Вып. 1. М., изд-во МГУ: 49–91.
  12. Свисюк И.В., Русеева З.М., Федотова Л.В. 1992. Погода и урожай зерновых культур. СПб., Гидрометеоиздат: 223 с.
  13. Безуглова О.С., Хырхырова М.М. 2008. Почвы Ростовской области. Ростов н/Д, изд-во ЮФУ: 352 с.
  14. Дмитриев Е.А. 2009. Математическая статистика в почвоведении. М., Книжный дом «ЛИБРОКОМ»: 328 с.
  15. Красильников П.В. 2007. Геостатистика и география почв. М., Наука: 177 с.
  16. Прасолов Л.И. 1916. О черноземе Приазовских степей. Почвоведение. 1: 23–46.
  17. Егоров В.В., Фридланд В.М., Иванова Е.Н., Розов Н.Н. 1977. Классификация и диагностика почв СССР. М., Колос: 221 с.
  18. Морозов И.В., Безуглова О.С., Минаева Е.Н. 2017. О формировании карбонатного горизонта черноземов обыкновенных карбонатных Нижнего Дона. Живые и биокосные системы. 22: 1–15. URL: http://www.jbks.ru/archive/issue-22/article-10/
  19. Безуглова О.С., Минаева Е.Н., Морозов И.В. 2019. Генезис карбонатного и гипсоносного горизонтов в черноземах обыкновенных карбонатных. Наука Юга России. 15(4): 55–62. doi: 10.7868/S25001640190407

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies