A STUDY OF VIBRATIONS OF A BIMORPHOUS PLATE FROM PIEZOELECTROMAGNETIC MATERIAL IN AN ALTERNATING MAGNETIC FIELD


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This work presents a study of transverse vibrations of a bimorph consisting of two piezomagnetoelectric layers located in an alternating magnetic field. Piezomagnetoelectric layers are a multilayer composite with alternating piezoelectric and piezomagnetic layers. The mechanical and physical properties of such a composite are specified by effective constants known in the literature. Based on the applied theory of oscillations of a multilayer plate, taking into account the nonlinear distribution of the electric and magnetic potential in the piezoactive layers both in the longitudinal and transverse directions, a study of the stress-strain state, electric and magnetic fields of a hinged bimorph was carried out. The electric potential is assumed to be zero at all electrodes, while the magnetic potential is equal to zero at the inner boundary and is unknown at the outer ones. Thus, the distribution of the electric and magnetic potentials in the middle of the layer is assumed to be unknown functions, and the distribution of the magnetic potential at the outer boundary is also a function to be found. In this task, Kirchhoff’s hypotheses for mechanical characteristics were applied. The variational principle and the quadratic dependence of the electric and magnetic potentials on the thickness of the piezoactive layers is also used in this work. A system of differential equations and boundary conditions was obtained. The resulting boundary value problem was solved by numerical methods. Comparison of the calculation results according to the proposed theory with the flat problem solved in the finite element package FlexPDE in the low-frequency region showed that the error in finding the characteristics of the mechanical and magnetic fields is less than 1 %. In turn, when determining the electric field, the difference was about 5% in the middle part of the plate and 27 % in the vicinity of the support points. This error is due to the fact that the finite element analysis demonstrates a clear nonlinear character of the electric field distribution, while the applied theory is linear.

作者简介

A. Soloviev

Don State Technical University; Southern Federal University

Rostov-on-Don, Russian Federation; Rostov-on-Don, Russian Federation

B. Do

Don State Technical University; Le Quy Don Technical University

Rostov-on-Don, Russian Federation; Hanoi, Vietnam

V. Chebanenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: valera.chebanenko@yandex.ru
Rostov-on-Don, Russian Federation

V. Vasiliev

Don State Technical University

Rostov-on-Don, Russian Federation

参考

  1. Gaudenzi P. 2009. Smart structures: physical behavior, mathematical modeling and applications. New York, Wiley: 194 p.
  2. Qader İ.N., Kök M., Dagdelen F., Aydoğdu Y. 2019. A review of smart materials: researches and applications. El-Cezeri Journal of Science and Engineering. 6(3): 755–788. doi: 10.31202/ecjse.562177
  3. Chebanenko V.A., Akopyan V.A., Parinov I.A. 2015. Piezoelectric Generators and Energy Harvesters: Modern State of the Art. In: Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. New York, Nova Science Publishers: 243–277.
  4. Amrillah T., Hermawan A., Wulandari C.P., Muthi’Ah A.D., Simanjuntak F.M. 2021. Crafting the multiferroic BiFeO3-CoFe2O4 nanocomposite for next-generation devices: A review. Materials and Manufacturing Processes. 36(14): 1579–1596. doi: 10.1080/10426914.2021.1945096
  5. Abraime B., Mahmoud A., Boschini F., Ait Tamerd M., Benyoussef A., Hamedoun M., Xiao Y., El Kenz A., Mounkachi O. 2018. Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. Journal of Magnetism and Magnetic Materials. 467: 129–134. doi: 10.1016/j.jmmm.2018.07.063
  6. Lamouri R., Mounkachi O., Salmani E., Hamedoun M., Benyoussef A., Ez-Zahraouy H. 2020. Size effect on the magnetic properties of CoFe2O4 nanoparticles: a Monte Carlo study. Ceramics International. 46(6): 8092–8096. doi: 10.1016/j.ceramint.2019.12.035
  7. Kim J.-Y. 2011. Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites. International Journal of Engineering Science. 49(9): 1001–1018. doi: 10.1016/j.ijengsci.2011.05.012
  8. Venkata Siva K., Kaviraj P., Arockiarajan A. 2020. Improved room temperature magnetoelectric response in CoFe2O4-BaTiO3 core shell and bipolar magnetostrictive properties in CoFe2O4. Materials Letters. 268: 127623. doi: 10.1016/j.matlet.2020.127623
  9. Challagulla K.S., Georgiades A.V. 2011. Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures. International Journal of Engineering Science. 49(1): 85–104. doi: 10.1016/j.ijengsci.2010.06.025
  10. Новацкий В., Шачнев В.А. 1986. Электромагнитные эффекты в твердых телах. М., Мир: 160 с.
  11. Партон В.З., Кудрявцев Б.А. 1988. Электромагнитоупругость пьезоэлектрических и электропроводных тел. М., Наука: 472 с.
  12. Багдасарян Г.Е., Даноян З.Н. 2006. Электромагнитоупругие волны. Ереван, изд-во Ереванского государственного университета: 492 с.
  13. Vatul’yan A.O., Rynkova A.A. 2001. Flexural vibrations of a piezoelectric bimorph with a cut internal electrode. Journal of Applied Mechanics and Technical Physics. 42(1): 164–168. doi: 10.1023/A:1018837401827
  14. Soloviev A.N., Oganesyan P.A., Lupeiko T.G., Kirillova E.V., Chang S.H., Yang C.D. 2016. Modeling of non-uniform polarization for multi-layered piezoelectric transducer for energy harvesting devices. In: Advanced Materials. Heidelberg, Springer: 651–658. doi: 10.1007/978-3-319-26324-3_46
  15. Levi M.O., Kalinchuk V.V. 2017. Some features of the dynamics of electro-magneto-elastic half-space with initial deformations. In: Dynamics of Systems, Mechanisms and Machines (Dynamics) (Omsk, Russia, 14–16 November 2017). Omsk, IEEE: 1–5. doi: 10.1109/Dynamics.2017.8239478
  16. Леви М.О., Анджикович И.Е., Ворович Е.И., Агаян К.Л. 2012. Влияние граничных условий на динамику электромагнитоупругой полуограниченной среды. Вестник Южного научного центра. 8(4): 14–19.
  17. Soloviev A.N., Chebanenko V.A., Parinov I.A., Oganesyan P.A. 2019. Applied theory of bending vibrations of a piezoelectric bimorph with a quadratic electric potential distribution. Materials Physics and Mechanics. 42(1): 65–73. doi: 10.18720/MPM.4212019_7
  18. Соловьёв А.Н., Чебаненко В.А., Паринов И.А., Оганесян П.А. 2019. Исследование колебаний биморфной пластины с учетом нелинейности электрического потенциала. Наука Юга России. 15(3): 3–11. doi: 10.7868/S25000640190301
  19. Binh D.T., Chebanenko V.A., Duong L.V., Kirillova E., Thang P.M., Soloviev A.N. 2020. Applied theory of bending vibration of the piezoelectric and piezomagnetic bimorph. Journal of Advanced Dielectrics. 10(3): 2050007. doi: 10.1142/S2010135X20500071
  20. Kurbatova N.V., Nadolin D.K., Nasedkin A.V., Oganesyan P.A., Soloviev A.N. 2018. Finite element approach for composite magneto-piezoelectric materials modeling in ACELANCOMPOS package. In: Analysis and Modelling of Advanced Structures and Smart Systems. Advanced Structured Materials, vol. 81. Singapore, Springer: 69–88. doi: 10.1007/978-981-10-6895-9_5

补充文件

附件文件
动作
1. JATS XML

版权所有 © Издательство «Наука», 2021

##common.cookie##