TRANSFORMATION OF STRUCTURAL STATUS OF SOILS INFLUENCED BY URBOPEDOGENESIS ON THE EXAMPLE OF ROSTOV AGGLOMERATION


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Soil structure, as a result of a complex system of intra-soil interactions and external influences, has undergone changes in conditions of urban pedogenesis. It affects the protective functions of the soil, the role of which increases significantly in urban landscapes. Hence, the relevance of studying the processes of transformation of the structure in urban soils is high. The composition of structural fractions and their water resistance in typical urban soils – urbostratozems (open and sealed under dense coverings) and chernozems migration-segregation of recreational zones of the city were considered in a comparative aspect. The composition and quality of the structure were studied according to the results of dry and wet sieving by Savvinov’s method. The difference in the structural status of these two groups of soils was evaluated by horizons, comparing them with each other using Student’s criterion. Taking into account the multivariate formation of urbic horizons, they were divided into 2 clusters: heavy and light in order to reduce the scatter of values. It was found that a clear sign of urbopedogenesis is an increase in the proportion of structural aggregates with a diameter >10 mm in both the urbic and buried horizons. In the light horizons of the urbic, a higher content of fractions of 0.5–0.25 and <0.25 mm was found than in the heavy ones. The buried part of the urbic soil profile, which is actually preserved under the thickness of urbic soil, migration-segregation chernozem, tends to have an increased content of clumpy fractions as a result of reducing the proportion of agronomically valuable aggregates compared to recreational chernozems. The water stability of the structure is more stable indicator. A significant increase in the content of 0.5–0.25 mm fraction as compared with native soils was found only in the buried humus-accumulative horizons due to a decrease in the share of aggregates of size >3 mm and 2–1 mm.

About the authors

S. S Tagiverdiev

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Email: stagiverdiev@sfedu.ru
Rostov-on-Don, Russian Federation

O. S Bezuglova

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

S. N Gorbov

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

E. N Minaeva

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

D. A Kozyrev

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

P. N Skripnikov

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

N. V Salnik

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

V. A Korban

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

N. P Dymchenko

Academy of Biology and Biotechnology of D.I. Ivanovsky of the Southern Federal University

Rostov-on-Don, Russian Federation

References

  1. Добровольский Г.В., Никитин Е.Д. 2000. Сохранение почв как незаменимого компонента биосферы. М., Наука/Интерпериодика: 185 с.
  2. Трифонова Т.А., Мищенко Н.В., Будаков Д.А. 2007. Использование информационно-аналитической системы в почвенно-экологических исследованиях. Почвоведение. 1: 23–30.
  3. Барбер С.А. 1988. Биологическая доступность питательных веществ в почве. Механистический подход. М., Агропромиздат: 376 с.
  4. Най П.Х., Тинклер П.Б. 1980. Движение растворов в системе почва – растение. М., Колос: 365 с.
  5. Хэнкс Р.Дж., Ашкрофт Дж.Л. 1985. Прикладная физика почв. Влажность и температура почвы. Л., Гидрометеоиздат: 151 с.
  6. Семенов В.М., Когут Б.М. 2015. Почвенное органическое вещество. М., ГЕОС: 233 с.
  7. Шеин Е.В., Верховцева Н.В., Быкова Г.С., Пашкевич Е.Б. 2020. Агрегатообразование в каолинитовой суспензии при микробиологической модификации поверхности глины. Почвоведение. 3: 351–357. doi: 10.31857/S0032180X20030077
  8. Sollins P., Homann P., Caldwell B.A. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma. 74(1–2): 65–105. doi: 10.1016/S0016-7061(96)00036-5
  9. Азовцева Н.А., Смагин А.В. 2018. Динамика физических и физико-химических свойств городских почв при использовании солевых противогололедных средств. Почвоведение. 1: 118–128. doi: 10.7868/S0032180X18010124
  10. Холодов В.А., Ярославцева Н.В., Фарходов Ю.Р., Белобров В.П., Юдин С.А., Айдиев А.Я., Лазарев В.И., Фрид А.С. 2019. Изменение соотношения фракций агрегатов в гумусовых горизонтах черноземов в различных условиях землепользования. Почвоведение. 2: 184–193. doi: 10.1134/S0032180X19020060
  11. Горбов С.Н., Безуглова О.С., Абросимов К.Н., Скворцова Е.Б., Тагивердиев С.С., Морозов И.В. 2016. Физические свойства почв Ростовской агломерации. Почвоведение. 8:964–974. doi: 10.7868/S0032180X16060034
  12. World Soil Resources Reports 106. World Reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. 2015. Rome, Food and Agriculture Organization of the United Nations: 192 p.
  13. Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. 2004. Классификация и диагностика почв России. Смоленск, Ойкумена: 342 с.
  14. Прокофьева Т.В., Герасимова М.И., Безуглова О.С., Бахматова К.А., Гольева А.А., Горбов С.Н., Жарикова Е.А., Матинян Н.Н., Наквасина Е.Н., Сивцева Н.Е. 2014. Введение почв и почвоподобных образований городских территорий в классификацию почв России. Почвоведение. 10: 1155–1164. doi: 10.7868/S0032180X14100104
  15. Тагивердиев С.С., Безуглова О.С., Горбов С.Н., Скрипников П.Н., Козырев Д.А. 2021. Особенности агрегатного состава в связи с соотношением углерода органического вещества и карбонатов в почвах Ростовской агломерации. Почвоведение. 9: 1143–1149. doi: 10.31857/S0032180X21090124
  16. Безуглова О.С., Тагивердиев С.С., Горбов С.Н. 2018. Физические характеристики городских почв Ростовской агломерации. Почвоведение. 9: 1153–1159. doi: 10.1134/S0032180X18090022
  17. Гаврилюк Ф.Я. 1955. Черноземы Западного Предкавказья. Харьков, изд-во Харьковского ун-та: 148 c.
  18. Вадюнина А.Ф., Корчагина З.А. 1986. Методы исследования физических свойств почв. М., Агропромиздат: 416 с.
  19. Дмитриев Е.А. 2010. Математическая статистика в почвоведении. М., Либроком: 336 с.
  20. Шеин Е.В., Милановский Е.Ю. 2014. Органическое вещество и структура почвы: учение В.Р. Вильямса и современность. Известия Тимирязевской сельскохозяйственной академии. 1: 42–51.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies