GEODYNAMIC MONITORING OF THE CRIMEAN BRIDGE AREA


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

A description of the integrated autonomous GPS geodynamic station in the area of the bridge across the Kerch Strait, located in the seismically active zone of the Kerch-Taman region with the maximum possible level of shaking up to 9 points, is presented. The danger to this complex engineering structure is the deep Kerch fault, the seismic activity of which was recorded in numerous historical records and data of the modern industrial period. Geodynamic aseismic movements, mud volcanism and other hazardous geological processes, which can cause damage to the bridge structure and create emergency situations at this particularly important object, are also dangerous. In 2021, in order to monitor the seismogeodynamic activity of the bridge area across the Kerch Strait, the Southern Scientific Centre of the Russian Academy of Sciences (SSC RAS) and Yuzhmorgeologiya JSC installed an autonomous satellite geodynamic station (SGS) as part of the SGS network on the Taman Peninsula. The receiving ground design of the GPS antenna device is made taking into account the recommendations of the international geodynamic service IGS and consists of a special base and a forced centering device. Measurements at the geodynamic station are performed by the GPS Trimble 5700 receiver and the MR-107 radon indicator. The operation of all SGS devices is controlled by a fanless XCY industrial computer based on the Windows 7 operating system. The electrical characteristics of the uninterruptible power supply circuit were determined by the method of UNAVCO (University NAVSTAR Consortium, USA). Measurement data are received every day via the Internet at the monitoring center of the SSC RAS. After primary processing, GPS measurements are sent for secondary processing to the geodynamic program GAMIT v. 7. The data obtained after processing contain the coordinates of the receiving antenna of the SGS with an horizontal accuracy of 2–3 mm and vertical accuracy of 6–8 mm. The secondary processing ends with the Matlab program package developed at the SSC RAS.

Авторлар туралы

V. Babeshko

Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

V. Kalinchuk

Southern Scientific Centre of the Russian Academy of Sciences

Email: vkalin415@mail.ru
Rostov-on-Don, Russian Federation

V. Shestopalov

Southern Scientific Centre of the Russian Academy of Sciences

Email: valcpg@mail.ru
Rostov-on-Don, Russian Federation

E. Glazyrin

Yuzhmorgeologiya Joint-Stock Company

Email: eaglazyrin@mail.ru
Gelendzhik, Russian Federation

B. Alyoshin

Yuzhmorgeologiya Joint-Stock Company

Email: bnaleshin@rusgeology.ru
Gelendzhik, Russian Federation

I. Leontyev

Yuzhmorgeologiya Joint-Stock Company

Email: LeontievIV@rusgeology.ru
Gelendzhik, Russian Federation

O. Didikin

Yuzhmorgeologiya Joint-Stock Company

Email: 9@bk.ru
Gelendzhik, Russian Federation

A. Borodako

Yuzhmorgeologiya Joint-Stock Company

Email: andrejborodako@mail.ru
Gelendzhik, Russian Federation

V. Fomenko

Southern Federal University branch in Gelendzhik

Email: FomenkoVA@rusgeology.ru
Gelendzhik, Russian Federation

V. Sheremetyev

Project Institute of Territory Planning Ltd.

Email: sheremetev-v@mail.ru
Krasnodar, Russian Federation

Әдебиет тізімі

  1. Глазырин Е.А. 2017. Основные результаты изучения подводного грязевого вулканизма Керченско-Таманского региона. В кн.: Современные проблемы геологии, геофизики и геоэкологии Северного Кавказа. Том Х. Часть 2. М., ИИЕТ РАН: 39–48.
  2. Popkov V.I., Fomenko V.A., Glazyrin E.A., Popkov I.V. 2013. A catastrophic tectonic event in summer 2011 in the Taman Peninsula. Doklady Earth Sciences. 448(2): 172–174. doi: 10.1134/S1028334X13020207
  3. Рогожин Е.А., Овсюченко А.Н., Лутиков А.И., Собисевич А.Л., Собисевич Л.Е., Горбатиков А.В. 2014. Эндогенные опасности Большого Кавказа. М., ИФЗ РАН: 256 с.
  4. СП 14.13330.2018. Строительство в сейсмических районах. Актуализированная редакция СНиП 11-7-81. 2018. М., Стандартинформ: 122 с.
  5. Смирнова М.Н. 2001. Глубинное строение, геодинамика и нефтегазоносность Керченско-Таманской кольцевой структуры. В кн.: Современные проблемы геологии нефти и газа. М., Институт геологии: 32–41.
  6. Уломов В.И., Данилова Т.И., Медведева Н.С., Полякова Т.П., Шумилина Л.С. 2007. К оценке сейсмической опасности на Северном Кавказе. Физика Земли. 7: 31–45.
  7. Dobrovolsky I.P., Zubkov S.I., Miachkin V.I. 1979. Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics. 117(5): 1025–1044. doi: 10.1007/BF00876083
  8. Чернов Ю.К. 2004. Разработка комплексной методики оценки вероятных сейсмических воздействий, сейсмической опасности и сейсмического риска (на примере районов Северного Кавказа и Сахалина). Отчёт о НИР. Ставрополь, Госстрой РФ: 251 с.
  9. Бабешко В.А., Калинчук В.В., Шестопалов В.Л., Шереметьев В.М. 2016. Технологии геодинамического мониторинга района транспортного перехода через Керченский пролив. Наука Юга России. 12(1): 22–31.
  10. Бабешко В.А., Шестопалов В.Л., Юбко В.М., Глазырин Е.А. 2016. Характер движений поверхности земной коры по данным GPS-измерений в районе Азово-Черноморского побережья Российской Федерации. Наука Юга России. 12(4):33–40.
  11. Calculations for Solar Arrays and Battery Backup. UNAVCO. URL: https://kb.unavco.org/kb/article.php?id=463 (дата обращения: 20.05.2022).
  12. Herring T.A., King R.W., Floyd M.A., McClusky S.С. 2018. GAMIT Reference Manual. GPS Analysis at MIT. Release 10.7. Cambridge, MA, Massachusetts Institute of Technology: 168 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Издательство «Наука», 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>