GRAIN STRUCTURE OF SrFe2/3W1/3O3 MULTIFERROICS


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The ceramics of the high temperature SrFe2/3W1/3O3 multiferroic was made by the method of solid-phase reactions. According to the results of X-ray diffraction analysis, it was revealed that the sample is single-phased, there are no impurities. The grain structure of SrFe2/3W1/3O3 was analyzed using optical and electron microscopy. Despite the wide range of grain sizes, all of them have an identical shape, which confirms the absence of impurity phases. The grain boundaries are clean and do not have any inclusions. The internal structure of the grains themselves is homogeneous, almost smooth.

Sobre autores

A. Nazarenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: avnazarenko1@gmail.com
Rostov-on-Don, Russian Federation

G. Valov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

A. Pavlenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

Bibliografia

  1. Ye Z.-G., Schmid H. 1994. Electric field induced effect on the optical, dielectric and ferroelectric properties of Pb(Fe2/3W1/3)O3 single crystals. Ferroelectrics. 162(1): 119–133. doi: 10.1080/00150199408245097
  2. Zhou L., Vilarinho P.M., Baptista J.L. 1999. The characteristics of the diffuse phase transition in Mn doped Pb(Fe2/3W1/3)O3 relaxor ceramics. J. Appl. Phys. 85(4): 2312–2317. doi: 10.1063/1.369543
  3. Mitoseriu L., Carnasciali M.M., Piaggio P., Nanni P. 2002. Evidence of the relaxor-paraelectric phase transition in Pb(Fe2/3W1/3)O3 ceramics. Appl. Phys. Lett. 81(26): 5006–5008. doi: 10.1063/1.1530711
  4. Ivanov S.A., Eriksson S.-G., Tellgren R., Rundlöf H. 2004. Neutron powder diffraction study of the magnetoelectric relaxor Pb(Fe2/3W1/3)O3. Mater. Res. Bull. 39(14–15): 2317–2328. doi: 10.1016/j.materresbull.2004.07.025
  5. Liu H. 2021. The piezoelectric memory effect of PbFe2/3W1/3O3 ceramic. Ceramics International. 47(11): 16221–16224. doi: 10.1016/j.ceramint.2021.02.200
  6. Ivanov S.A., Eriksson S.G., Tellgren R., Rundlöf H. 2001. Evolution of the atomic and magnetic structure of Sr3Fe2WO9: a temperature dependent neutron powder diffraction study. Mater. Res. Bull. 36(15): 2585–2596. doi: 10.1016/S0025-5408(01)00643-2
  7. Viola M. del C., Augsburger M.S., Pinacca R.M., Pedregosa J.C., Carbonio R.E., Mercader R.C. 2003. Orderedisorder at Fe sites in SrFe2/3Bʺ1/3O3 (Bʺ = Mo, W, Te, U) tetragonal double perovskites. J. Solid State Chem. 175(2): 252–257. doi: 10.1016/S0022-4596(03)00257-3
  8. Pavlenko A.V., Turik A.V., Shilkina L.A., Kubrin S.P., Rusalev Y.V., Reznichenko L.A., Andryushina I.N. 2018. Preparation, structure, and dielectric and magnetic properties of SrFe2/3W1/3O3 ceramics. Physics of the Solid State. 60(3): 515–519. doi: 10.1134/S1063783418030216
  9. Pavlenko A.V., Kubrin S.P., Kozakov A.T., Shilkina L.A., Reznichenko L.A., Nikolskii A.V., Stashenko V.V., Rusalev Y.V., Petrosyan K.S. 2018. Phase transitions, dielectric, magnetic properties and valence of ions in AFe2/3W1/3O3±σ (A = Ba, Sr) multiferroic ceramics. Journal of Alloys and Compounds. 740: 1037–1045. doi: 10.1016/j.jallcom.2018.01.060
  10. Papadakis E.P. Physical Acoustics: principles and methods. Vol. 4B. 1968. New York, Academic Press: 269 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies