GRAIN STRUCTURE OF SrFe2/3W1/3O3 MULTIFERROICS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The ceramics of the high temperature SrFe2/3W1/3O3 multiferroic was made by the method of solid-phase reactions. According to the results of X-ray diffraction analysis, it was revealed that the sample is single-phased, there are no impurities. The grain structure of SrFe2/3W1/3O3 was analyzed using optical and electron microscopy. Despite the wide range of grain sizes, all of them have an identical shape, which confirms the absence of impurity phases. The grain boundaries are clean and do not have any inclusions. The internal structure of the grains themselves is homogeneous, almost smooth.

About the authors

A. V Nazarenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: avnazarenko1@gmail.com
Rostov-on-Don, Russian Federation

G. V Valov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

A. V Pavlenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

References

  1. Ye Z.-G., Schmid H. 1994. Electric field induced effect on the optical, dielectric and ferroelectric properties of Pb(Fe2/3W1/3)O3 single crystals. Ferroelectrics. 162(1): 119–133. doi: 10.1080/00150199408245097
  2. Zhou L., Vilarinho P.M., Baptista J.L. 1999. The characteristics of the diffuse phase transition in Mn doped Pb(Fe2/3W1/3)O3 relaxor ceramics. J. Appl. Phys. 85(4): 2312–2317. doi: 10.1063/1.369543
  3. Mitoseriu L., Carnasciali M.M., Piaggio P., Nanni P. 2002. Evidence of the relaxor-paraelectric phase transition in Pb(Fe2/3W1/3)O3 ceramics. Appl. Phys. Lett. 81(26): 5006–5008. doi: 10.1063/1.1530711
  4. Ivanov S.A., Eriksson S.-G., Tellgren R., Rundlöf H. 2004. Neutron powder diffraction study of the magnetoelectric relaxor Pb(Fe2/3W1/3)O3. Mater. Res. Bull. 39(14–15): 2317–2328. doi: 10.1016/j.materresbull.2004.07.025
  5. Liu H. 2021. The piezoelectric memory effect of PbFe2/3W1/3O3 ceramic. Ceramics International. 47(11): 16221–16224. doi: 10.1016/j.ceramint.2021.02.200
  6. Ivanov S.A., Eriksson S.G., Tellgren R., Rundlöf H. 2001. Evolution of the atomic and magnetic structure of Sr3Fe2WO9: a temperature dependent neutron powder diffraction study. Mater. Res. Bull. 36(15): 2585–2596. doi: 10.1016/S0025-5408(01)00643-2
  7. Viola M. del C., Augsburger M.S., Pinacca R.M., Pedregosa J.C., Carbonio R.E., Mercader R.C. 2003. Orderedisorder at Fe sites in SrFe2/3Bʺ1/3O3 (Bʺ = Mo, W, Te, U) tetragonal double perovskites. J. Solid State Chem. 175(2): 252–257. doi: 10.1016/S0022-4596(03)00257-3
  8. Pavlenko A.V., Turik A.V., Shilkina L.A., Kubrin S.P., Rusalev Y.V., Reznichenko L.A., Andryushina I.N. 2018. Preparation, structure, and dielectric and magnetic properties of SrFe2/3W1/3O3 ceramics. Physics of the Solid State. 60(3): 515–519. doi: 10.1134/S1063783418030216
  9. Pavlenko A.V., Kubrin S.P., Kozakov A.T., Shilkina L.A., Reznichenko L.A., Nikolskii A.V., Stashenko V.V., Rusalev Y.V., Petrosyan K.S. 2018. Phase transitions, dielectric, magnetic properties and valence of ions in AFe2/3W1/3O3±σ (A = Ba, Sr) multiferroic ceramics. Journal of Alloys and Compounds. 740: 1037–1045. doi: 10.1016/j.jallcom.2018.01.060
  10. Papadakis E.P. Physical Acoustics: principles and methods. Vol. 4B. 1968. New York, Academic Press: 269 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Издательство «Наука»

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies