SYNTHESIS, SPECTRAL LUMINECENT AND IONOCHROMIC PROPERTIES OF THIOSEMICARBAZONES OF SUBSTITUTED QUINOLINE-3-CARBALDEHYDES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A series of thiosemicarbazones of substituted quinoline-3-carbaldehydes has been synthesized. 2-phenylethinylquinoline thiosemicarbazone displays selective ionochromic properties to Cu2+ and Hg2+ ions in acetonitrile. The colorless solution turns yellow, and the initial emission of the ligand shifts to the longwave region and becomes more intense. Tetrazol[1,5-a]quinoline derivative exhibits a contrasting ionochromic naked-eye effect in the presence of Cd2+, Hg2+ and Cu2+ cations; the solution color changes to bright yellow in the case of copper ions. 2-oxo-1,2-dihydroquinoline derivative also reveals ionochromic properties with respect to the above cations, but new absorption maxima are formed in the shorter wavelength region of the spectrum. In the presence of cadmium(II) ions, a selective increase in the emission intensity (I/I0) of 90 times was observed, which exceeds the sensitivity parameters of most known fluorescent sensors to Cd2+. The detected patterns show the great potential of substituted thiosemicarbazones in the sensory area and can be used in the creation of ionochromic and fluorescent chemosensors for the express analysis of cations.

Sobre autores

V. Podshibyakin

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, Russian Federation

E. Shepelenko

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation

I. Dubonosova

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, Russian Federation

O. Karlutova

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, Russian Federation

A. Dubonosov

Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Email: aled@ipoc.sfedu.ru
Rostov-on-Don, Russian Federation

V. Bren

Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, Russian Federation

V. Minkin

Institute of Physical and Organic Chemistry, Southern Federal University; Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences

Rostov-on-Don, Russian Federation; Rostov-on-Don, Russian Federation

Bibliografia

  1. Irie M., Fukaminato T., Matsuda K. 2014. Photochromism of diarylethene molecules and crystals. Chemical Reviews. 114(24): 12174−12277. doi: 10.1021/cr500249p
  2. Komarov I.V., Afonin S., Babii O., Schober T., Ulrich A.S. 2022. Diarylethenes – molecules with good memory. In: Molecular Photoswitches: Chemistry, Properties, and Applications. Wiley, Weinheim: 152−177.
  3. Cheng H.B., Zhang S., Bai E., Cao X., Wang J., Qi J., Liu J., Zhao J., Zhang L., Yoon J. 2022. Future-oriented advanced diarylethene photoswitches: from molecular design to spontaneous assembly systems. Advanced Materials. 34(16): 2108289. doi: 10.1002/adma.202108289
  4. Zhang J., Tian H. 2018. The endeavor of diarylethenes: new structures, high performance, and bright future. Advanced Optical Materials. 6(6): 1701278. doi: 10.1002/adom.201701278
  5. Irie M. 2000. Diarylethenes for memories and switches. Chemical Reviews. 100(5): 1685−1716. doi: 10.1021/cr980069d
  6. Hassan A.A., Shawky A.M., Shehatta H.S. 2012. Chemistry and heterocyclization of thiosemicarbazones. Journal of Heterocyclic Chemistry. 49(1): 21−37. doi: 10.1002/jhet.677
  7. Mahesh K., Padmavathi D.A. 2020. Novel photoswitchable dihetarylethenes exhibiting fluorescence. Journal of Fluorescence. 30: 35−40. doi: 10.1007/s10895-019-02444-7
  8. Shepelenko E.N., Podshibyakin V.A., Tikhomirova K.S., Revinskii Yu.V., Dubonosov A.D., Bren V.A., Minkin V.I. 2018. Photo- and ionochromic thienyl(coumarinyl)thiazoles. Journal of Molecular Structure. 1163: 221−226. doi: 10.1016/j.molstruc.2018.03.005
  9. Basri R., Ahmed N., Khalid M., Khan M.U., Abdullah M., Syed A., Elgorban A.M., Al-Rejaie S.S., Braga A.A.C., Shafiq Z. 2022. Quinoline based thiosemicarbazones as colorimetric chemosensors for fluoride and cyanide ions and DFT studies. Scientific Reports. 12: 4927. doi: 10.1038/s41598-022-08860-3
  10. Normaya E., Baharu N.A., Ahmad M.N. 2020. Synthesis of thiosemicarbazone-based colorimetric chemosensor for Cu2+ ions’ recognition in aqueous medium: Experimental and theoretical studies. Journal of Molecular Structure. 1212: 128094. doi: 10.1016/j.molstruc.2020.128094
  11. Yang L., Li M., Ruan S., Xu X., Wang Z., Wang S. 2021. Highly efficient coumarin-derived colorimetric chemosensors for sensitive sensing of fluoride ions and their applications in logic circuits. Spectrochimica Acta A. 255: 119718. doi: 10.1016/j.saa.2021.119718
  12. Raju V., Kumar R., Kumar S.K., Madhu G., Bothra S., Sahoo S.K. 2020. A ninhydrin-thiosemicarbazone based highly selective and sensitive chromogenic sensor for Hg2+ and F− ions. Journal of Chemical Sciences. 132: 89. doi: 10.1007/s12039-020-01799-w
  13. Amuthakala S., Bharathi S., Rahiman A.K. 2020. Thiosemicarbazone-based bifunctional chemosensors for simultaneous detection of inorganic cations and fluoride anion. Journal of Molecular Structure. 1219: 128640. doi: 10.1016/j.molstruc.2020.128640
  14. Zhou Y., Zhang J.F., Yoon J. 2014. Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews. 114(10): 5511−5571. doi: 0.1021/cr400352m
  15. Arooj M., Zahra M., Islam M., Ahmed N., Waseem A., Shafiq Z. 2021. Coumarin based thiosemicarbazones as effective chemosensors for fluoride ion detection. Spectrochimica Acta Part A. 261: 120011. doi: 10.1016/j.saa.2021.
  16. Kaur B., Kaur N., Kumar S. 2018. Colorimetric metal ion sensors – a comprehensive review of the years 2011–2016. Coordination Chemistry Reviews. 358: 13−69. doi: 10.1016/j.ccr.2017.12.002
  17. Kim H.N., Ren W.X., Kim J.S., Yoon J. 2012. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chemical Society Reviews. 41(8): 3210−3244. doi: 10.1039/c1cs15245a
  18. Banerjee M., Ghosh M., Ta S., Das J., Das D. 2019. A smart optical probe for detection and discrimination of Zn2+, Cd2+ and Hg2+ at nano-molar level in real samples. Journal of Photochemistry and Photobiology A. 377: 286−297. doi: 10.1016/j.jphotochem.2019.04.002
  19. Dubey P.K., Srinivas Rao S., Aparna V. 2003. Synthesis of some novel 3-(2-chloro-3-quinolyl)-5-phenyl[1,3]thiazolo[2,3-c] [1,2,4]triazoles. Heterocyclic Communications. 9(3): 281−286. doi: 10.1515/HC.2003.9.3.281
  20. Raja D.S., Ganesan P., Bhuvanesh N.S.P., Reibenspies J.H., Renganathan R., Natarajan K. 2011. Effect of terminal N-substitution in 2-oxo-1,2-dihydroquinoline-3-carbaldehyde thiosemicarbazones on the mode of coordination, structure, interaction with protein, radical scavenging and cytotoxic activity of copper(II) complexes. Dalton Transactions. 40(17): 4548–4559. doi: 10.1039/C0DT01657H

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Издательство «Наука», 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies