Genetic factors affecting genetic variance in coarse-wool sheep

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The life activity of the rural population in the world is 70% dependent on the traditional animal farming systems based on the domestic livestock breeds. Consequently, it is very important to preserve and enhance the local breeds of animals resistant to any diseases and better adapted to the changing environmental conditions. The environmental factors affecting the genetic structure in 24 coarse-wool breeds of sheep reared in 9 countries of Europe and Asia have been studied. The genetic surveys of twenty microsatellite loci were carried out. The most significant environmental factors causing the genetic variance in the analyzed sheep breeds appeared to be the geographical latitude and the annual mean temperature. The genetic variance of the coarse-wool sheep breeds was generally higher at low geographical latitudes, which corresponds to the data obtained for the other vertebral species. Therefore, the protection of sheep populations inhabiting the areas at the low geographical latitudes can better maintain the intraspecific diversity. This fact should be especially considered when planning the programs to conserve the biodiversity of farm animals. The breeds of sheep reared near the centers of domestication are distributed in the low latitude ranges. They have a higher genetic variance. Therefore, they can serve as the source of genes contributing to adaptation under the conditions of global climate change.

全文:

受限制的访问

作者简介

M. Ozerov

University of Turku; Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

candidate of biological sciences

芬兰, Turku; Jokioinen

M. Tapio

Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

доктор биологических наук

芬兰, Jokioinen

J. Kantanen

Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

Doctor of Biological Sciences

芬兰, Jokioinen

S. Marzanova

Moscow state Academy of Veterinary Medicine and Biotechnology – MVA
named after K.I. Skryabin

Email: nmarzanov@yandex.ru

candidate of biological sciences

俄罗斯联邦, Moscow

E. Koreckaya

Tver State Agricultural Academy

Email: nmarzanov@yandex.ru

candidate of biological sciences

俄罗斯联邦, Tver

V. Lushnikov

Saratov State Agrarian University in honor of N.I. Vavilov

Email: nmarzanov@yandex.ru

Doctor of Agricultural Sciences

俄罗斯联邦, Saratov

N. Marzanov

Federal Science Center for Animal Hasbandry

编辑信件的主要联系方式.
Email: nmarzanov@yandex.ru

Doctor of Biological Sciences

俄罗斯联邦, Moskovskaya oblast, Dubrovitsy

参考

  1. Alderson L. Breeds at risk: Definition and measurement of the factors which determine endangerment // Livestock Science. – 2009. – Vol.123. – P.23–27.
  2. Marcos-Carcavilla An., Mutikainen M., González C., Calvo J.H., Kantanen J., Sanz A., Marzanov N.S., Pérez-Guzmán M.D., Serrano M. A SNP in the HSP90AA1 gene 5′ flanking region is associated with the adaptation to differential thermal conditions in the ovine species // Cell Stress and Chaperones. – 2010. – Vol.15. – P.95-100.
  3. McManus C., Hermuche P., Paiva S.R., Moraes J.C.F., Barros de Melo C. Mendes C. Geographical distribution of sheep breeds in Brazil and their relationship with climatic and environmental factors as risk classification for conservation // Brazilian Journal of Science and Technology. – 2014. – Vol.1. – N3. doi: 10.1186/2196-288X-1-3.
  4. Boettcher P.J., Hoffmann I., Baumung R., Drucker A.G., McManus C., Berg P., Stella A., Nilsen L.B., Moran D., Naves M., Thomson M.C. Genetic resources and genomics for adaptation of livestock to climate change // Frontiers in Genetics. – 2015. – Vol.5. – Article 461. – 3 p.
  5. Ligda C. ERFP WG “documentation and information”. ERFP Annual Assembly, 25-26 August 2012. Bratislava, Slovakia, 2012. https://www.animalgeneticresources.net/wp-content/uploads/2018/05/ERFP-Assembly_Bratislava2012_WGDocu_Ligda.pdf. Дата обращения 5 сентября 2019 года.
  6. Nevo E. The evolution of genome-phenome diversity under environmental stress // Proceedings of the National Academy of Sciences USA. – 2001. – Vol.98. – P.6233-6240.
  7. Joost S., Colli L., Baret P.V., Garcia J.F., Boettcher P.J., Tixier-Boichard M., Ajmone-Marsan P. The GLOBALDIV Consortium, 2010. Integrating georeferenced multiscale and multidisciplinary data for the management of biodiversity in livestock genetic resources // Animal Genetics. – 2010. – Vol.41. – N1. – P.47-63.
  8. Joost S., Colli L., Baret P.V., Garcia J.F., Boettcher P.J., Tixier-Boichard M., Ajmone-Marsan P. The GLOBALDIV Consortium, 2010. Integrating georeferenced multiscale and multidisciplinary data for the management of biodiversity in livestock genetic resources // Animal Genetics. – 2010. – Vol.41. – N1. – P.47-63.
  9. Nevo E. The evolution of genome-phenome diversity under environmental stress // Proceedings of the National Academy of Sciences USA. – 2001. – Vol.98. – P.6233-6240.
  10. Manel S., Schwartz M.K., Luikart G., Taberlet P. Landscape genetics: combining landscape ecology and population genetics // Trends in Ecology and Evolution. – 2003. – Vol.18. – P.189–197.
  11. Guillot G., Estoup A., Mortier F., Cosson J.C. A spatial statistical model for landscape genetics // Genetics. – 2005. – Vol.170. – P.1261–1280.
  12. Tapio M., Ozerov M., Tapio I., Toro M.A., Marzanov N., Cinkulov M., Goncharenko G., Kiselyova T., Murawski M., Kantanen J. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia // BMC Genetics. – 2010. – Vol.11(76). – P.1-36.
  13. El Mousadik A., Petit R.J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco // Theoretical and Applied Genetics. – 1996. – Vol.92. – P.832-839.
  14. Goudet J. FSTAT (version 1.2): a computer program to calculate F-statistics // J. Heredity. – 1995. – Vol.86. – P.485-486.
  15. Вейр Б. Анализ генетических данных. – M.: Изд-вo «Mир», 1995. – 400 с.
  16. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure // Evolution. – 1984. – Vol.38(6). – P.1358–1370.
  17. Langella O. (2002) POPULATIONS 1.2.28. Population genetic software (individuals or populations distances, phylogenetic trees). Available from http://bioinformatics.org/~tryphon/populations.
  18. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data // J. Mol. Evol. – 1983. – Vol.19. – P.153-170.
  19. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. – 1987. – Vol.4. – P.406-425.
  20. Foll M., Gagiotti O. Indentifying the environmental factors that determine the genetic structure of populations // Genetics. – 2006. – Vol.174. – P.875–891.
  21. Adams R.I., Hadly E.A. Genetic diversity within vertebrate species is greater at lower latitudes // Evolutionary Ecology. – 2012. – Vol.27. – P.133-143.
  22. Sun W., Chang H., Musa H.H., Yang Z.P., Tsunoda K., Ren Z.J., Geng R.Q. Influence of environmental factors on the genetic diversity of sheep // Journal of Animal and Veterinary Advances. – 2009. – Vol.8. – P.1070-1074.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian academy of sciences, 2019