Genetic factors affecting genetic variance in coarse-wool sheep

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The life activity of the rural population in the world is 70% dependent on the traditional animal farming systems based on the domestic livestock breeds. Consequently, it is very important to preserve and enhance the local breeds of animals resistant to any diseases and better adapted to the changing environmental conditions. The environmental factors affecting the genetic structure in 24 coarse-wool breeds of sheep reared in 9 countries of Europe and Asia have been studied. The genetic surveys of twenty microsatellite loci were carried out. The most significant environmental factors causing the genetic variance in the analyzed sheep breeds appeared to be the geographical latitude and the annual mean temperature. The genetic variance of the coarse-wool sheep breeds was generally higher at low geographical latitudes, which corresponds to the data obtained for the other vertebral species. Therefore, the protection of sheep populations inhabiting the areas at the low geographical latitudes can better maintain the intraspecific diversity. This fact should be especially considered when planning the programs to conserve the biodiversity of farm animals. The breeds of sheep reared near the centers of domestication are distributed in the low latitude ranges. They have a higher genetic variance. Therefore, they can serve as the source of genes contributing to adaptation under the conditions of global climate change.

Full Text

Restricted Access

About the authors

M. Yu. Ozerov

University of Turku; Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

candidate of biological sciences

Finland, Turku; Jokioinen

M. Tapio

Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

доктор биологических наук

Finland, Jokioinen

J. Kantanen

Luke Natural Resources Institute Finland

Email: nmarzanov@yandex.ru

Doctor of Biological Sciences

Finland, Jokioinen

S. N. Marzanova

Moscow state Academy of Veterinary Medicine and Biotechnology – MVA
named after K.I. Skryabin

Email: nmarzanov@yandex.ru

candidate of biological sciences

Russian Federation, Moscow

E. A. Koreckaya

Tver State Agricultural Academy

Email: nmarzanov@yandex.ru

candidate of biological sciences

Russian Federation, Tver

V. P. Lushnikov

Saratov State Agrarian University in honor of N.I. Vavilov

Email: nmarzanov@yandex.ru

Doctor of Agricultural Sciences

Russian Federation, Saratov

N. S. Marzanov

Federal Science Center for Animal Hasbandry

Author for correspondence.
Email: nmarzanov@yandex.ru

Doctor of Biological Sciences

Russian Federation, Moskovskaya oblast, Dubrovitsy

References

  1. Alderson L. Breeds at risk: Definition and measurement of the factors which determine endangerment // Livestock Science. – 2009. – Vol.123. – P.23–27.
  2. Marcos-Carcavilla An., Mutikainen M., González C., Calvo J.H., Kantanen J., Sanz A., Marzanov N.S., Pérez-Guzmán M.D., Serrano M. A SNP in the HSP90AA1 gene 5′ flanking region is associated with the adaptation to differential thermal conditions in the ovine species // Cell Stress and Chaperones. – 2010. – Vol.15. – P.95-100.
  3. McManus C., Hermuche P., Paiva S.R., Moraes J.C.F., Barros de Melo C. Mendes C. Geographical distribution of sheep breeds in Brazil and their relationship with climatic and environmental factors as risk classification for conservation // Brazilian Journal of Science and Technology. – 2014. – Vol.1. – N3. doi: 10.1186/2196-288X-1-3.
  4. Boettcher P.J., Hoffmann I., Baumung R., Drucker A.G., McManus C., Berg P., Stella A., Nilsen L.B., Moran D., Naves M., Thomson M.C. Genetic resources and genomics for adaptation of livestock to climate change // Frontiers in Genetics. – 2015. – Vol.5. – Article 461. – 3 p.
  5. Ligda C. ERFP WG “documentation and information”. ERFP Annual Assembly, 25-26 August 2012. Bratislava, Slovakia, 2012. https://www.animalgeneticresources.net/wp-content/uploads/2018/05/ERFP-Assembly_Bratislava2012_WGDocu_Ligda.pdf. Дата обращения 5 сентября 2019 года.
  6. Nevo E. The evolution of genome-phenome diversity under environmental stress // Proceedings of the National Academy of Sciences USA. – 2001. – Vol.98. – P.6233-6240.
  7. Joost S., Colli L., Baret P.V., Garcia J.F., Boettcher P.J., Tixier-Boichard M., Ajmone-Marsan P. The GLOBALDIV Consortium, 2010. Integrating georeferenced multiscale and multidisciplinary data for the management of biodiversity in livestock genetic resources // Animal Genetics. – 2010. – Vol.41. – N1. – P.47-63.
  8. Joost S., Colli L., Baret P.V., Garcia J.F., Boettcher P.J., Tixier-Boichard M., Ajmone-Marsan P. The GLOBALDIV Consortium, 2010. Integrating georeferenced multiscale and multidisciplinary data for the management of biodiversity in livestock genetic resources // Animal Genetics. – 2010. – Vol.41. – N1. – P.47-63.
  9. Nevo E. The evolution of genome-phenome diversity under environmental stress // Proceedings of the National Academy of Sciences USA. – 2001. – Vol.98. – P.6233-6240.
  10. Manel S., Schwartz M.K., Luikart G., Taberlet P. Landscape genetics: combining landscape ecology and population genetics // Trends in Ecology and Evolution. – 2003. – Vol.18. – P.189–197.
  11. Guillot G., Estoup A., Mortier F., Cosson J.C. A spatial statistical model for landscape genetics // Genetics. – 2005. – Vol.170. – P.1261–1280.
  12. Tapio M., Ozerov M., Tapio I., Toro M.A., Marzanov N., Cinkulov M., Goncharenko G., Kiselyova T., Murawski M., Kantanen J. Microsatellite-based genetic diversity and population structure of domestic sheep in northern Eurasia // BMC Genetics. – 2010. – Vol.11(76). – P.1-36.
  13. El Mousadik A., Petit R.J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco // Theoretical and Applied Genetics. – 1996. – Vol.92. – P.832-839.
  14. Goudet J. FSTAT (version 1.2): a computer program to calculate F-statistics // J. Heredity. – 1995. – Vol.86. – P.485-486.
  15. Вейр Б. Анализ генетических данных. – M.: Изд-вo «Mир», 1995. – 400 с.
  16. Weir B.S., Cockerham C.C. Estimating F-statistics for the analysis of population structure // Evolution. – 1984. – Vol.38(6). – P.1358–1370.
  17. Langella O. (2002) POPULATIONS 1.2.28. Population genetic software (individuals or populations distances, phylogenetic trees). Available from http://bioinformatics.org/~tryphon/populations.
  18. Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data // J. Mol. Evol. – 1983. – Vol.19. – P.153-170.
  19. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. – 1987. – Vol.4. – P.406-425.
  20. Foll M., Gagiotti O. Indentifying the environmental factors that determine the genetic structure of populations // Genetics. – 2006. – Vol.174. – P.875–891.
  21. Adams R.I., Hadly E.A. Genetic diversity within vertebrate species is greater at lower latitudes // Evolutionary Ecology. – 2012. – Vol.27. – P.133-143.
  22. Sun W., Chang H., Musa H.H., Yang Z.P., Tsunoda K., Ren Z.J., Geng R.Q. Influence of environmental factors on the genetic diversity of sheep // Journal of Animal and Veterinary Advances. – 2009. – Vol.8. – P.1070-1074.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences